题目内容
已知二次函数f(x)=x2-16x+q+3
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)是否存在常数t(t≥0),当t∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a),若存在,求出所有满足条件的t,若不存在,说明理由.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)是否存在常数t(t≥0),当t∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a),若存在,求出所有满足条件的t,若不存在,说明理由.
考点:二次函数的性质,函数零点的判定定理
专题:函数的性质及应用
分析:(1)由二次函数的单调性易得
,解关于q的不等式组可得.
(2)分t<8,最大值是f(t);t<8,最大值是f(10);8≤t<10三种情况进行讨论,对于每一种情况,由区间长度是12-t求出t的值,验证范围后即可得到答案.
|
(2)分t<8,最大值是f(t);t<8,最大值是f(10);8≤t<10三种情况进行讨论,对于每一种情况,由区间长度是12-t求出t的值,验证范围后即可得到答案.
解答:
解:∵二次函数f(x)=x2-16x+q+3的对称轴为x=8,
∴函数f(x)在区间[-1,1]上是减函数,
∵函数在区间[-1,1]上存在零点,
∴必有
,即
,
解不等式组可得-20≤q≤12,
∴实数q的取值范围为[-20,12]
(2)当
时,即0≤t≤6时,f(x)的值域为:[f(8),f(t)],
即[q-61,t2-16t+q+3].
∴t2-16t+q+3-(q-61)=t2-16t+64=12-t.
∴t2-15t+52=0,∴t=
.
经检验t=
不合题意,舍去.
当当
时,即6≤t<8时,f(x)的值域为:[f(8),f(10)],
即[q-61,q-57].
∴q-57-(q-61)=4=12-t.
∴t=8
经检验t=8不合题意,舍去.
当t≥8时,f(x)的值域为:[f(t),f(10)],
即[t2-16t+q+3,q-57]
∴q-57-(t2-16t+q+3)=-t2+16t-60=12-t
∴t2-17t+72=0,∴t=8或t=9.
经检验t=8或t=9满足题意,
所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.
∴函数f(x)在区间[-1,1]上是减函数,
∵函数在区间[-1,1]上存在零点,
∴必有
|
|
解不等式组可得-20≤q≤12,
∴实数q的取值范围为[-20,12]
(2)当
|
即[q-61,t2-16t+q+3].
∴t2-16t+q+3-(q-61)=t2-16t+64=12-t.
∴t2-15t+52=0,∴t=
15±
| ||
| 2 |
经检验t=
15±
| ||
| 2 |
当当
|
即[q-61,q-57].
∴q-57-(q-61)=4=12-t.
∴t=8
经检验t=8不合题意,舍去.
当t≥8时,f(x)的值域为:[f(t),f(10)],
即[t2-16t+q+3,q-57]
∴q-57-(t2-16t+q+3)=-t2+16t-60=12-t
∴t2-17t+72=0,∴t=8或t=9.
经检验t=8或t=9满足题意,
所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.
点评:本题考查了二次函数的性质,考查了分类讨论的数学思想,训练了利用函数单调性求函数的最值,正确的分类是解答该题的关键,是中档题.
练习册系列答案
相关题目
点P为底边长为2
,高为2的正三棱柱表面上的动点,MN是该棱柱内切球的一条直径,则
•
取值范围是( )
| 3 |
| PM |
| PN |
| A、[0,2] |
| B、[0,3] |
| C、[0,4] |
| D、[-2,2] |