ÌâÄ¿ÄÚÈÝ

ÏÂÁÐÃüÌ⣺
¢Ùk£¾4ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
¦Ð
3
µ¥Î»£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£»
¢Ûº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]ÉÏΪÔöº¯Êý£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬ÔòʵÊýmµÄÖµµÈÓÚ5£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨¡¡¡¡£©
A¡¢¢Ù¢Û¢ÜB¡¢¢Ú¢Û¢ÜC¡¢¢Ú¢ÜD¡¢¢Ú
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬¼´¿ÉÅжϳö£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
¦Ð
3
µ¥Î»¿ÉµÃy=sin(x-
¦Ð
3
)
£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£»
¢Ûx¡Ê[0£¬
¦Ð
6
]£¬¿ÉµÃ(2x+
¦Ð
3
)
¡Ê[
¦Ð
3
£¬
2¦Ð
3
]
£¬¿ÉµÃº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]Éϲ»¾ßÓе¥µ÷ÐÔ£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®¼´¿ÉÅжϳö£®
½â´ð£º ½â£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬
Òò´Ëk£¾4»òk£¼-1ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
¦Ð
3
µ¥Î»¿ÉµÃy=sin(x-
¦Ð
3
)
£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£¬ÕýÈ·£»
¢Ûx¡Ê[0£¬
¦Ð
6
]£¬¿ÉµÃ(2x+
¦Ð
3
)
¡Ê[
¦Ð
3
£¬
2¦Ð
3
]
£¬Òò´Ëº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]Éϲ»ÎªÔöº¯Êý£¬²»ÕýÈ·£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®Òò´Ë²»ÕýÈ·£®
×ÛÉϿɵãºÖ»ÓТÚÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ£º±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨¡¢Ô²µÄÒ»°ãʽ¡¢Èý½Çº¯Êý±ä»»¼°Æäµ¥µ÷ÐÔ¡¢ÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø