ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌ⣺
¢Ùk£¾4ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
µ¥Î»£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪÔÀ´µÄ
£¬µÃµ½º¯Êýy=sin£¨2x-
£©µÄͼÏó£»
¢Ûº¯Êýf£¨x£©=sin£¨2x+
£©ÔÚ[0£¬
]ÉÏΪÔöº¯Êý£»
¢ÜÍÖÔ²
+
=1µÄ½¹¾àΪ2£¬ÔòʵÊýmµÄÖµµÈÓÚ5£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨¡¡¡¡£©
¢Ùk£¾4ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
| ¦Ð |
| 3 |
| 1 |
| 2 |
| ¦Ð |
| 3 |
¢Ûº¯Êýf£¨x£©=sin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
¢ÜÍÖÔ²
| x2 |
| m |
| y2 |
| 4 |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨¡¡¡¡£©
| A¡¢¢Ù¢Û¢Ü | B¡¢¢Ú¢Û¢Ü | C¡¢¢Ú¢Ü | D¡¢¢Ú |
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬¼´¿ÉÅжϳö£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
µ¥Î»¿ÉµÃy=sin(x-
)£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪÔÀ´µÄ
£¬µÃµ½º¯Êýy=sin£¨2x-
£©µÄͼÏó£»
¢Ûx¡Ê[0£¬
]£¬¿ÉµÃ(2x+
)¡Ê[
£¬
]£¬¿ÉµÃº¯Êýf£¨x£©=sin£¨2x+
£©ÔÚ[0£¬
]Éϲ»¾ßÓе¥µ÷ÐÔ£»
¢ÜÍÖÔ²
+
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®¼´¿ÉÅжϳö£®
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
| 1 |
| 2 |
| ¦Ð |
| 3 |
¢Ûx¡Ê[0£¬
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
| 2¦Ð |
| 3 |
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
¢ÜÍÖÔ²
| x2 |
| m |
| y2 |
| 4 |
½â´ð£º
½â£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬
Òò´Ëk£¾4»òk£¼-1ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
µ¥Î»¿ÉµÃy=sin(x-
)£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪÔÀ´µÄ
£¬µÃµ½º¯Êýy=sin£¨2x-
£©µÄͼÏó£¬ÕýÈ·£»
¢Ûx¡Ê[0£¬
]£¬¿ÉµÃ(2x+
)¡Ê[
£¬
]£¬Òò´Ëº¯Êýf£¨x£©=sin£¨2x+
£©ÔÚ[0£¬
]Éϲ»ÎªÔöº¯Êý£¬²»ÕýÈ·£»
¢ÜÍÖÔ²
+
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®Òò´Ë²»ÕýÈ·£®
×ÛÉϿɵãºÖ»ÓТÚÕýÈ·£®
¹ÊÑ¡£ºD£®
Òò´Ëk£¾4»òk£¼-1ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒÆ½ÒÆ
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
| 1 |
| 2 |
| ¦Ð |
| 3 |
¢Ûx¡Ê[0£¬
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
| 2¦Ð |
| 3 |
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
¢ÜÍÖÔ²
| x2 |
| m |
| y2 |
| 4 |
×ÛÉϿɵãºÖ»ÓТÚÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ£º±¾Ì⿼²éÁ˼òÒ×Âß¼µÄÅж¨¡¢Ô²µÄÒ»°ãʽ¡¢Èý½Çº¯Êý±ä»»¼°Æäµ¥µ÷ÐÔ¡¢ÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬ÒÑÖª½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa2=b2+c2+bc£®Ôò¡ÏA=£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|
ÏÂÁк¯ÊýÖУ¬¿ÉÒÔÊÇÆæº¯ÊýµÄΪ£¨¡¡¡¡£©
| A¡¢f£¨x£©=£¨x-a£©|x|£¬a¡ÊR |
| B¡¢f£¨x£©=x2+ax+1£¬a¡ÊR |
| C¡¢f£¨x£©=log2£¨ax-1£©£¬a¡ÊR |
| D¡¢f£¨x£©=ax+cosx£¬a¡ÊR |
ÒÑÖª¼¯ºÏM={x¡ÊR|0£¼x£¼2}£¬N={x¡ÊR|x£¾1}£¬ÔòM¡É£¨∁UN£©=£¨¡¡¡¡£©
| A¡¢[1£¬2£© |
| B¡¢£¨1£¬2£© |
| C¡¢£¨0£¬1] |
| D¡¢[0£¬1£© |
ÒÑÖªÏòÁ¿
=£¨1£¬2£©£¬
=£¨1£¬0£©£¬
=£¨3£¬4£©£¬Èô¦ËΪʵÊý£¬£¨
+¦Ë
£©¡Í
£¬Ôò¦ËµÄֵΪ£¨¡¡¡¡£©
| a |
| b |
| c |
| b |
| a |
| c |
A¡¢-
| ||
B¡¢-
| ||
C¡¢
| ||
D¡¢
|