题目内容
已知
=(x,2),
=(1,y),且x,y满足条件
,则z=
•
的最小值为( )
| a |
| b |
|
| a |
| b |
| A、-5 | B、1 | C、3 | D、-6 |
考点:简单线性规划,平面向量数量积的运算
专题:不等式的解法及应用
分析:利用数量积的公式求出z=x+2y,利用数形结合,即可得到结论.
解答:
解:z=z=
•
=(x,2)•(1,y)=x+2y,即y=-z,
则y=-
x+
,作出不等式对应的平面区域如图(阴影部分),
平移直线y=-
x+
,
由平移可知,当直线y=-
x+
经过点B时,直线y=-
x+
的纵截距最小,此时z最小,
由
,得
,即B(-1,-2),代入z=x+2y,得z的最小值为z═-1+2×(-2)=-5.
故选:A.
| a |
| b |
则y=-
| 1 |
| 2 |
| z |
| 2 |
平移直线y=-
| 1 |
| 2 |
| z |
| 2 |
由平移可知,当直线y=-
| 1 |
| 2 |
| z |
| 2 |
| 1 |
| 2 |
| z |
| 2 |
由
|
|
故选:A.
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
阅读如图所示程序框图,运行相应程序,则输出的S值为( )

A、-
| ||
B、
| ||
C、
| ||
D、
|
2014年西安地区特长生考试有8所名校招生,若某3位同学恰好被其中的2所名校录取,则不同的录取方法有( )
| A、68种 | B、84种 |
| C、168种 | D、224种 |
已知点P在曲线y=
上,α为曲线在点P处的切线的倾斜角,则α的取值范围是( )
-4
| ||
| ex+1 |
A、(0,
| ||||
B、[
| ||||
C、(
| ||||
D、[
|
某程序框图如图所示,若使输出的结果不大于20,则输入的整数i的最大值为( )

| A、3 | B、4 | C、5 | D、6 |
函数y=f(x+
)为定义在R上的偶函数,且当x≥
时,f(x)=(
)x+sinx,则下列选项正确的是( )
| π |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| A、f(3)<f(1)<f(2) |
| B、f(2)<f(1)<f(3) |
| C、f(2)<f(3)<f(1) |
| D、f(3)<f(2)<f(1) |
已知方程y=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x10,y10)的回归方程,则“x0=
,y0=
”是“(x0,y0)满足线性回归方程y=bx+a”的( )
| x1+x2+…+x10 |
| 10 |
| y1+y2+…+y10 |
| 10 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |