题目内容
数列{an}满足:a1=2,an=an-1+2n-1(n≥2),则该数列的通项公式是 .
考点:数列递推式
专题:等差数列与等比数列
分析:由已知得an-an-1=2n-1(n≥2),由此利用累加法能求出该数列的通项公式.
解答:
解:∵数列{an}满足:a1=2,an=an-1+2n-1(n≥2),
∴an-an-1=2n-1(n≥2),
∴an=a1+a2-a1+a3-a2+…+an-an-1
=2+3+5+7+…+(2n-1)
=2+
=n2+1.
故答案为:an=n2+1.
∴an-an-1=2n-1(n≥2),
∴an=a1+a2-a1+a3-a2+…+an-an-1
=2+3+5+7+…+(2n-1)
=2+
| (n-1)(3+2n-1) |
| 2 |
=n2+1.
故答案为:an=n2+1.
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目
直线y=-
x+
与圆x2+y2=4相交于A、B两点,则弦AB的长度为( )
| 3 |
| 4 |
| 5 |
| 4 |
A、3
| ||
B、2
| ||
C、
| ||
| D、1 |
数列{an}满足an+1-an+an-1=0(n≥2),且a1=1,a2=-1,则a2013的值为( )
| A、1 | B、-1 | C、2 | D、-2 |
一个三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为凹数,如524,746等都是凹数,那么各个数位上无重复数字的三位凹数有( )个.
| A、72 | B、120 |
| C、240 | D、360 |
已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(x•y)=f(x)+f(y),若数列{an}的前n项和为Sn,且满足f(Sn+2)-f(an)=f(3)(n∈N*),则an为( )
| A、2n-1 | ||
| B、n | ||
| C、2n-1 | ||
D、(
|
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1).
则f(2014,2015)的值为( )
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1).
则f(2014,2015)的值为( )
| A、22013+2014 |
| B、22013+4028 |
| C、22014+2014 |
| D、22014+4028 |