题目内容

7.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,则四边形ABCD绕AD旋转一周所成几何体的表面积为(  )
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

分析 旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.

解答 解:四边形ABCD绕AD旋转一周所成的几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面=
πr22+π(r1+r2)l2+πr1l1=$π×{5}^{2}+π×(2+5)×5+π×2×2\sqrt{2}$=(60+4$\sqrt{2}$)π,
故选:A.

点评 本题是基础题,考查旋转体的表面积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网