题目内容

18.在△ABC中,若BC=2,A=120°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

分析 由$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB,$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°即可

解答 解:∵$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,∴$(\overrightarrow{BC})^{2}=(\overrightarrow{AC}-\overrightarrow{AB})^{2}$⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB≤$\frac{4}{3}$
∴$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°≤$\frac{2}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为 $\frac{2}{3}$,
故选:A.

点评 考查向量减法的几何意义,数量积的运算及其计算公式,涉及了不等式a2+b2≥2ab的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网