题目内容

已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对?x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为(  )
A、(-∞,-1)
B、(-∞,1)
C、R
D、(-1,+∞)
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数的图象的平移得到g(x)=f(x+1)+5的图象的特点,有g′(x)>2x知g(x)<x2+4的单调性,可求得.
解答: 解:因为函数f(x)是定义在R上的奇函数,
所以函数f(x)关于原点对称,
又g(x)=f(x+1)+5,
故g(x)的图象关于点(-1,5)对称,
令h(x)=g(x)-x2-4,
∴h′(x)=g′(x)-2x,
∵对?x∈R,g′(x)>2x,
∴h(x)在R上是增函数,
又h(-1)=g(-1)-(-1)2-4=0,
∴g(x)<x2+4的解集是(-∞,-1).
故选A.
点评:本题考查抽象函数的图象间的平移,奇函数的性质,导数的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网