题目内容
9.△ABC的一个顶点为A(-4,2),两条中线分别在直线3x-2y+2=0和3x+5y-12=0上,求直线BC的方程.分析 设C(m,n),可得$\left\{\begin{array}{l}{3m+5n-12=0}\\{3×\frac{m-4}{2}-2×\frac{2+n}{2}+2=0}\end{array}\right.$,解得C坐标.同理可得B坐标.再利用点斜式即可得出直线BC的方程.
解答 解:设C(m,n),则$\left\{\begin{array}{l}{3m+5n-12=0}\\{3×\frac{m-4}{2}-2×\frac{2+n}{2}+2=0}\end{array}\right.$,解得m=4,n=0.即C(4,0).
同理可得:B(2,4).
∴直线BC的方程为:y-0=$\frac{4-0}{2-4}$(x-4),
化为:2x+y-8=0.
点评 本题考查了中点坐标公式、点斜式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a、b、c三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有( )
| A. | 96种 | B. | 124种 | C. | 130种 | D. | 150种 |
20.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次测验中成绩的均值分别为( )
| A. | 18,5 | B. | 18,25 | C. | 90,25 | D. | 90,5 |
14.设P,Q是两个集合,定义集合P-Q={x|x∈P,x∉Q}为P,Q的“差集”,已知$P=\left\{{x|1-\frac{2}{x}<0}\right\}$,Q={x||x-2|<1},那么Q-P等于( )
| A. | {x|0<x<1} | B. | {x|0<x≤1} | C. | {x|1≤x<2} | D. | {x|2≤x<3} |