题目内容

若点O是△ABC所在平面内的一点,a、b、c分别是∠A,∠B,∠C的对边长,且满足a•
OA
+b•
OB
+c•
OC
=
0
,则O是△ABC的(  )
A、外心B、内心C、重心D、垂心
考点:向量在几何中的应用
专题:平面向量及应用
分析:
a
=
OB
-
OC
b
=
OC
-
OA
c
=
OA
-
OB
,又
a
OA
+
b
OB
+
c
OC
=0,能求出O为△ABC的内心.
解答: 解:∵
a
=
OB
-
OC

b
=
OC
-
OA

c
=
OA
-
OB

a
OA
+
b
OB
+
c
OC
=0,
∴(
OB
-
OC
)•
OA
+(
OC
-
OA
)•
OB
+(
OA
-
OB
)•
OC
=
0

∴O为△ABC的内心.
故选:B.
点评:本题考查三角形的内心的判断,是中档题,解题时要注意向量知识的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网