题目内容
用反证法证明命题:“已知a、b∈N*,如果ab可被 5 整除,那么a、b 中至少有一个能被 5 整除”时,假设的内容应为( )
| A、a、b都能被5整除 |
| B、a、b都不能被5整除 |
| C、a、b不都能被5整除 |
| D、a不能被5整除 |
考点:反证法
专题:证明题,反证法,推理和证明
分析:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.
解答:
解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.
命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.
故选:B.
命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.
故选:B.
点评:反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.
练习册系列答案
相关题目
已知f(x)=3sin2x+acos2x,其中a为常数.f(x)的图象关于直线x=
对称,则f(x)在以下区间上是单调函数的是( )
| π |
| 6 |
A、[-
| ||||
B、[-
| ||||
C、[-
| ||||
D、[0,
|
已知直线l1:ax+y=1和直线l2:4x+ay=2,则“a+2=0”是“l1∥l2”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知集合A={(x,y)|y=3x},B={(x,y)|y=2-x},则A∩B=( )
| A、{0} |
| B、{1} |
| C、{(0,1)} |
| D、{(1,0)} |