题目内容

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+
1
2

(1)若x∈[0,
π
2
],f(x)=
3
3
,求cosx的值;
(2)在△ABC中,角A、B、C的对边分别是a,b,c,且满足2acosB≤2c-
3
b.求f(A)的取值范围.
考点:平面向量数量积的运算,正弦定理
专题:平面向量及应用
分析:(1)首先,根据向量的数量积的运算性质并结合二倍角公式,得到f(x)=sin(x-
π
6
),然后,结合x∈[0,
π
2
],并得到cosx=cos[(x-
π
6
)+
π
6
],然后,求解其值即可;
(2)根据正弦定理,得到cosA
3
2
,从而得到0<A
π
6
,然后,结合三角函数的单调性求解其范围.
解答: 解:(1)∵向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),
∴函数f(x)=
m
n
+
1
2

=
3
sin
x
2
cos
x
2
-cos2
x
2
+
1
2

=
3
2
sinx-
1
2
(2cos2
x
2
-1)
=
3
2
sinx-
1
2
cosx
=sin(x-
π
6
),
∴f(x)=sin(x-
π
6
),
∵x∈[0,
π
2
],
∴x-
π
6
∈[-
π
6
π
3
],
∴cos(x-
π
6
)>0,
∴cosx=cos[(x-
π
6
)+
π
6
]=cos(x-
π
6
)cos
π
6
-sin(x-
π
6
)sin
π
6

=
6
3
×
3
2
-
3
6

=
2
2
-
3
6

∴cosx=
2
2
-
3
6

(2)根据正弦定理,由2acosB≤2c-
3
b,得
2sinAcosB≤2sin(A+B)-
3
sinB,
∴2cosAsinB-
3
sinB≥0,
∴cosA
3
2

∵0<A<π,
∴0<A
π
6

∴f(A)=sin(A-
π
6
),
∵0<A
π
6

∴-
π
6
<A-
π
6
≤0,
∴f(A)∈(-
1
2
,0],
∴f(A)的取值范围(-
1
2
,0].
点评:本题重点考查了三角函数的图象与性质、二倍角公式、平面向量的基本运算等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网