ÌâÄ¿ÄÚÈÝ
Èç¹ûÊýÁÐ{an}ͬʱÂú×㣺£¨1£©¸÷Ïî¾ùΪÕýÊý£¬£¨2£©´æÔÚ³£Êýk£¬¶ÔÈÎÒân¡ÊN*£¬an+12=anan+2+k¶¼³ÉÁ¢£¬ÄÇô£¬ÕâÑùµÄÊýÁÐ{an}ÎÒÃdzÆÖ®Îª¡°ÀàµÈ±ÈÊýÁС±£®Óɴ˸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁбض¨ÊÇ¡°ÀàµÈ±ÈÊýÁС±£®ÎÊ£º
£¨1£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=£¨a2-a1£©2£¬ÇóÖ¤£ºa1¡¢a2¡¢a3³ÉµÈ²îÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=0£¬a2¡¢a4¡¢a5³ÉµÈ²îÊýÁУ¬Çó
掙术
£¨3£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒa1=a£¬a2=b£¨a¡¢bΪ³£Êý£©£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃan+an+2=¦Ëan+1¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=£¨a2-a1£©2£¬ÇóÖ¤£ºa1¡¢a2¡¢a3³ÉµÈ²îÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=0£¬a2¡¢a4¡¢a5³ÉµÈ²îÊýÁУ¬Çó
| a2 |
| a1 |
£¨3£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒa1=a£¬a2=b£¨a¡¢bΪ³£Êý£©£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃan+an+2=¦Ëan+1¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÀà±ÈÍÆÀí
רÌ⣺ж¨Òå,ÍÆÀíºÍÖ¤Ã÷
·ÖÎö£º£¨1£©ÓÉж¨Òå¿ÉµÃ£¬
=anan+2+£¨a2-a1£©2£¬Áîn=1£¬×¢Òâµ½a1£¾0£¬»¯¼òÔËÓõȲîÊýÁе͍Òå¼´¿ÉÖ¤Ã÷£»
£¨2£©ÔËÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÐÔÖÊ£¬¼´¿ÉÇó³ö¹«±È£»
£¨3£©¿É´Ó±ØÒªÌõ¼þÈëÊÖÍÆ³ö£º´æÔÚ³£Êý¦Ë=
£¬Ê¹an+an+2=¦Ëan+1£¬ÔÙ¼ÓÒÔÖ¤Ã÷£¬×¢Òâ¸ù¾Ýж¨Òå£¬ÍÆ³ö£¬µ±n¡ÊN*¶¼ÓÐan+an+2=
an+1£¬ÓÉa1£¬a2£¬µÃµ½a3£¬´Ó¶øµÃµ½¦Ë=
£¬½áÂÛ³ÉÁ¢£®
| a | 2 n+1 |
£¨2£©ÔËÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÐÔÖÊ£¬¼´¿ÉÇó³ö¹«±È£»
£¨3£©¿É´Ó±ØÒªÌõ¼þÈëÊÖÍÆ³ö£º´æÔÚ³£Êý¦Ë=
| a2+b2-k |
| ab |
| a1+a3 |
| a2 |
| a2+b2-k |
| ab |
½â´ð£º
£¨1£©Ö¤Ã÷£ºµ±k=(a2-a1)2ʱ£¬ÔÚ
=anan+2+kÖУ¬Áîn=1µÃ
=a1a3+(a2-a1)2£¬
¼´a1a3-2a1a2+
=0£®
¡ßa1£¾0£¬¡àa3-2a2+a1=0£¬¼´a2-a1=a3-a2•
¹Êa1£¬a2£¬a3³ÉµÈ²îÊýÁУ»
£¨2£©½â£ºµ±k=0ʱ£¬
=anan+2£¬
¡ßÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý¡àÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
É蹫±ÈΪq£¨q£¾0£©£¬
¡ßa2£¬a4£¬a5³ÉµÈ²îÊýÁУ¬¡àa2+a5=2a4£¬
¼´a1q+a1q4=2a1q3£®¡ßa1£¾0£¬q£¾0£¬
¡àq3-2q2+1=0£¬£¨q-1£©£¨q2-q-1£©=0£¬
½âµÃq=1»òq=
£¨ÉáÈ¥¸ºÖµ£©£®
¡à
=q=1»ò
=q=
£»
£¨3£©´æÔÚ³£Êý¦Ë=
£¬Ê¹an+an+2=¦Ëan+1£®
£¨»ò´Ó±ØÒªÌõ¼þÈëÊÖa1+a3=¦Ëa2⇒¦Ë=
=
=
£©
Ö¤Ã÷ÈçÏ£º¡ß
=anan+2+k£¬¡à
=an-1an+1+k£¬n¡Ý2£¬n¡ÊN*£¬
¡à
-
=anan+2-an-1an+1£¬¼´
+an-1an+1=anan+2+
£¬
ÓÉÓÚan£¾0£¬´ËµÈʽÁ½±ßͬ³ýÒÔanan+1£¬µÃ
=
£¬
¡à
=
=¡=
£¬
¼´µ±n¡ÊN*¶¼ÓÐan+an+2=
an+1£¬
¡àa1=a£¬a2=b£¬
=anan+2+k£¬¡àa3=
¡à
=
=
•
¡à¶ÔÈÎÒân¡ÊN*¶¼ÓÐan+an+2=¦Ëan+1£¬
´Ëʱ¦Ë=
£®
| a | 2 n+1 |
| a | 2 2 |
¼´a1a3-2a1a2+
| a | 2 1 |
¡ßa1£¾0£¬¡àa3-2a2+a1=0£¬¼´a2-a1=a3-a2•
¹Êa1£¬a2£¬a3³ÉµÈ²îÊýÁУ»
£¨2£©½â£ºµ±k=0ʱ£¬
| a | 2 n+1 |
¡ßÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý¡àÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
É蹫±ÈΪq£¨q£¾0£©£¬
¡ßa2£¬a4£¬a5³ÉµÈ²îÊýÁУ¬¡àa2+a5=2a4£¬
¼´a1q+a1q4=2a1q3£®¡ßa1£¾0£¬q£¾0£¬
¡àq3-2q2+1=0£¬£¨q-1£©£¨q2-q-1£©=0£¬
½âµÃq=1»òq=
1¡À
| ||
| 2 |
¡à
| a2 |
| a1 |
| a2 |
| a1 |
1+
| ||
| 2 |
£¨3£©´æÔÚ³£Êý¦Ë=
| a2+b2-k |
| ab |
£¨»ò´Ó±ØÒªÌõ¼þÈëÊÖa1+a3=¦Ëa2⇒¦Ë=
| a1+a3 |
| a2 |
a1+
| ||
| a2 |
| a2+b2-k |
| ab |
Ö¤Ã÷ÈçÏ£º¡ß
| a | 2 n+1 |
| a | 2 n |
¡à
| a | 2 n+1 |
| a | 2 n |
| a | 2 n+1 |
| a | 2 n |
ÓÉÓÚan£¾0£¬´ËµÈʽÁ½±ßͬ³ýÒÔanan+1£¬µÃ
| an+an+2 |
| an+1 |
| an-1+an+1 |
| an |
¡à
| an+an+2 |
| an+1 |
| an-1+an+1 |
| an |
| a1+a3 |
| a2 |
¼´µ±n¡ÊN*¶¼ÓÐan+an+2=
| a1+a3 |
| a2 |
¡àa1=a£¬a2=b£¬
| a | 2 n+1 |
| b2-k |
| a |
¡à
| a1+a3 |
| a2 |
a+
| ||
| b |
| a2+b2-k |
| ab |
¡à¶ÔÈÎÒân¡ÊN*¶¼ÓÐan+an+2=¦Ëan+1£¬
´Ëʱ¦Ë=
| a2+b2-k |
| ab |
µãÆÀ£º±¾Ì⿼²éж¨Òå¼°Àí½âºÍÔËÓã¬Í¬Ê±¿¼²éµÈ²îÊýÁк͵ȱÈÊýÁе͍Ò塢ͨÏîºÍÐÔÖÊ£¬ÕýÈ·Àí½â¶¨ÒåÊǽâ¾ö´ËÀàÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ijÉÌÆ·Ô¼Û200Ôª£¬ÈôÁ¬ÐøÁ½´ÎÕǼÛ10%ºó³öÊÛ£¬ÔòÐÂÊÛ¼ÛΪ£¨¡¡¡¡£©
| A¡¢222Ôª | B¡¢240Ôª |
| C¡¢242Ôª | D¡¢484Ôª |