题目内容

13.若将函数f(x)=cosx-sinx的图象向右平移m个单位后恰好与函数y=-f′(x),的图象重合,则m的值可以为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

分析 f(x)的图象向右平移m个单位后,的到的函数为y=$\sqrt{2}$sin($\frac{π}{4}$+m-x),函数y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),由题意可得 $\sqrt{2}$sin($\frac{π}{4}$+m-x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),故有$\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或$\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z.结合所给的选项,得出结论.

解答 解:函数f(x)=cosx-sinx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$sinx)=$\sqrt{2}$sin($\frac{π}{4}$-x)=-$\sqrt{2}$sin(x-$\frac{π}{4}$),
函数y=-f′(x)=sinx+cosx=$\sqrt{2}$(sinx $\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
把f(x)的图象向右平移m个单位后,得到的函数为y=-$\sqrt{2}$sin[(x-m)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{π}{4}$+m-x),
由题意可得 $\sqrt{2}$sin($\frac{π}{4}$+m-x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
故有 $\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或 $\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z.
结合所给的选项,只有B才满足条件,
故选:B.

点评 本题主要考查函数y=Asin(ωx+∅)的图象变换,求得$\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或$\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z,是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网