题目内容
18.已知函数f(x)=|2x-1|+|x+1|,g(x)=|x-a|+|x+a|.(Ⅰ)解不等式f(x)>9;
(Ⅱ)?x1∈R,?x2∈R,使得f(x1)=g(x2),求实数a的取值范围.
分析 (Ⅰ)不等式f(x)>9?$\left\{\begin{array}{l}{x<-1}\\{-2x+1-x-1>9}\end{array}\right.$,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{-2x+1+x+1>9}\end{array}\right.$,或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x-1+x+1>9}\end{array}\right.$,分别求解即可.
(Ⅱ)?x1∈R,?x2∈R,使得f(x1)=g(x2)?函数f(x)的值域是函数g(x)值域的子集,分别求出两函数值域,根据子集的定义列式求解.
解答 解:(Ⅰ)不等式f(x)>9?
$\left\{\begin{array}{l}{x<-1}\\{-2x+1-x-1>9}\end{array}\right.$,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{-2x+1+x+1>9}\end{array}\right.$,或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x-1+x+1>9}\end{array}\right.$,
即x<-3或∈∅或x>3,
∴原不等式解集为(3,+∞)∪(-∞,3);
(Ⅱ)?x1∈R,?x2∈R,使得f(x1)=g(x2)?函数f(x)的值域是函数g(x)值域的子集,
f(x)=$\left\{\begin{array}{l}{-3x,(x<-1)}\\{-x+2,(-1≤x≤\frac{1}{2})}\\{3x,(x>\frac{1}{2})}\end{array}\right.$,
当x<-1时,-3x>3;当-1≤x$≤\frac{1}{2}$时,$\frac{3}{2}≤$-x+2≤3;当x$>\frac{1}{2}$时,3x$≥\frac{3}{2}$,
∴函数f(x)的值域是[$\frac{3}{2},+∞$),
g(x)=|x-a|+|x+a|≥|2a|,
∴|2a|$≤\frac{3}{2}$,即-$\frac{3}{4}≤a≤\frac{3}{4}$.
∴实数a的取值范围为[-$\frac{3}{4}$,$\frac{3}{4}$].
点评 本题考查了绝对值不等式的解法,恒成立与存在问题,考查了转化思想,属于中档题.
| A. | ?x∈R,使得n<x2 | B. | ?x∈R,使得n≥x2 | C. | ?x∈R,使得n<x2 | D. | ?x∈R,使得n≤x2 |
| A. | 外离 | B. | 相交 | C. | 外切 | D. | 内切 |
| A. | y=x | B. | y=1 | C. | $y=\frac{1}{x}$ | D. | y=|x| |
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | π |
| A. | 8(π+4) | B. | 8(π+8) | C. | 16(π+4) | D. | 16(π+8) |