ÌâÄ¿ÄÚÈÝ
4£®ÎÒ¹ú¹Å´úÊýÑ§Öø×÷¡¶¾ÅÕÂËãÊõ¡·ÓÐÈçÏÂÎÊÌ⣺¡°½ñÓÐÈ˳ֽð³öÎ幨£¬Ç°¹Ø¶þ¶øË°Ò»£¬´Î¹ØÈý¶øË°Ò»£¬´Î¹ØËĶøË°Ò»£¬´Î¹ØÎå¶øË°Ò»£¬´Î¹ØÁù¶øË°Ò»£¬²¢Î幨Ëù˰£¬ÊÊÖØÒ»½ï£¬Îʱ¾³Ö½ð¼¸ºÎ¡±ÆäÒâ˼Ϊ¡°½ñÓÐÈ˳ֽð³öÎ幨£¬µÚ1¹ØÊÕ˰½ð$\frac{1}{2}$£¬µÚ2¹ØÊÕ˰½ðΪʣÓà½ðµÄ$\frac{1}{3}$£¬µÚ3¹ØÊÕ˰½ðΪʣÓà½ðµÄ$\frac{1}{4}$£¬µÚ4¹ØÊÕ˰½ðΪʣÓà½ðµÄ$\frac{1}{5}$£¬µÚ5¹ØÊÕ˰½ðΪʣÓà½ðµÄ$\frac{1}{6}$£¬5¹ØËùÊÕ˰½ðÖ®ºÍ£¬Ç¡ºÃÖØ1½ï£¬ÎÊÔÀ´³Ö½ð¶àÉÙ£¿¡±Èô½«ÌâÖС°5¹ØËùÊÕ˰½ðÖ®ºÍ£¬Ç¡ºÃÖØ1½ï£¬ÎÊÔÀ´³Ö½ð¶àÉÙ£¿¡±¸Ä³É¼ÙÉèÕâ¸öÔÀ´³Ö½ðΪx£¬°´´Ë¹æÂÉͨ¹ýµÚ8¹Ø£¬ÔòµÚ8¹ØÐèÊÕ˰½ðΪ$\frac{1}{72}$x£®·ÖÎö µÚ1¹ØÊÕ˰½ð£º$\frac{1}{2}$x£»µÚ2¹ØÊÕ˰½ð£º$\frac{1}{3}$£¨1-$\frac{1}{2}$£©x=$\frac{1}{2¡Á3}$x£»µÚ3¹ØÊÕ˰½ð£º$\frac{1}{4}$£¨1-$\frac{1}{2}$-$\frac{1}{6}$£©x=$\frac{1}{3¡Á4}$x£»¡£¬¿ÉµÃµÚ8¹ØÊÕ˰½ð£®
½â´ð ½â£ºµÚ1¹ØÊÕ˰½ð£º$\frac{1}{2}$x£»µÚ2¹ØÊÕ˰½ð£º$\frac{1}{3}$£¨1-$\frac{1}{2}$£©x=$\frac{1}{2¡Á3}$x£»µÚ3¹ØÊÕ˰½ð£º$\frac{1}{4}$£¨1-$\frac{1}{2}$-$\frac{1}{6}$£©x=$\frac{1}{3¡Á4}$x£»
¡£¬¿ÉµÃµÚ8¹ØÊÕ˰½ð£º$\frac{1}{8¡Á9}$x£¬¼´$\frac{1}{72}$x£®
¹Ê´ð°¸Îª£º$\frac{1}{72}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÄͨÏʽ¼°ÆäÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÒÑÖª¼¯ºÏA={x|x2-4x+3£¼0}£¬B={x|1£¼2x¡Ü4£¬x¡ÊN}£¬ÔòA¡ÉB=£¨¡¡¡¡£¨¡¡¡¡£©
| A£® | ∅ | B£® | £¨1£¬2] | C£® | {2} | D£® | {1£¬2} |
12£®cos10¡ãsin70¡ã-cos80¡ãsin20¡ã=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | -$\frac{1}{2}$ | D£® | -$\frac{\sqrt{3}}{2}$ |