ÌâÄ¿ÄÚÈÝ

16£®Éè|¦È|£¼$\frac{¦Ð}{2}$£¬nΪÕýÕûÊý£¬ÊýÁÐ{an}µÄͨÏʽan=sin$\frac{n¦Ð}{2}$tann¦È£¬ÆäǰnÏîºÍΪSn
£¨1£©ÇóÖ¤£ºµ±nΪżº¯Êýʱ£¬an=0£»µ±nÎªÆæº¯Êýʱ£¬an=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£»
£¨2£©ÇóÖ¤£º¶ÔÈκÎÕýÕûÊýn£¬S2n=$\frac{1}{2}$sin2¦È•[1+£¨-1£©n+1tan2n¦È]£®

·ÖÎö £¨1£©ÀûÓÃsin$\frac{n¦Ð}{2}$=$\left\{\begin{array}{l}{0£¬nΪżÊý}\\{£¨-1£©^{\frac{n-1}{2}}£¬nÎªÆæÊý}\end{array}\right.$£¬¼´¿ÉµÃ³ö£®
£¨2£©a2k-1+a2k=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð Ö¤Ã÷£º£¨1£©an=sin$\frac{n¦Ð}{2}$tann¦È£¬
µ±n=2k£¨k¡ÊN*£©ÎªÅ¼Êýʱ£¬an=sink¦Ð•tann¦È=0£»
µ±n=2k-1ÎªÆæº¯Êýʱ£¬an=$sin\frac{2k-1}{2}¦Ð$•tann¦È=£¨-1£©k-1tann¦È=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®
£¨2£©a2k-1+a2k=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®¡àÆæÊýÏî³ÉµÈ±ÈÊýÁУ¬Ê×ÏîΪtan¦È£¬¹«±ÈΪ-tan2¦È£®
¡àS2n=$\frac{tan¦È[1-£¨-1£©^{n}ta{n}^{2n}¦È]}{1-£¨-ta{n}^{2}¦È£©}$=$\frac{1}{2}$sin2¦È•[1+£¨-1£©n+1tan2n¦È]£®

µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½¡¢µÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø