ÌâÄ¿ÄÚÈÝ
16£®Éè|¦È|£¼$\frac{¦Ð}{2}$£¬nΪÕýÕûÊý£¬ÊýÁÐ{an}µÄͨÏʽan=sin$\frac{n¦Ð}{2}$tann¦È£¬ÆäǰnÏîºÍΪSn£¨1£©ÇóÖ¤£ºµ±nΪżº¯Êýʱ£¬an=0£»µ±nÎªÆæº¯Êýʱ£¬an=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£»
£¨2£©ÇóÖ¤£º¶ÔÈκÎÕýÕûÊýn£¬S2n=$\frac{1}{2}$sin2¦È•[1+£¨-1£©n+1tan2n¦È]£®
·ÖÎö £¨1£©ÀûÓÃsin$\frac{n¦Ð}{2}$=$\left\{\begin{array}{l}{0£¬nΪżÊý}\\{£¨-1£©^{\frac{n-1}{2}}£¬nÎªÆæÊý}\end{array}\right.$£¬¼´¿ÉµÃ³ö£®
£¨2£©a2k-1+a2k=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð Ö¤Ã÷£º£¨1£©an=sin$\frac{n¦Ð}{2}$tann¦È£¬
µ±n=2k£¨k¡ÊN*£©ÎªÅ¼Êýʱ£¬an=sink¦Ð•tann¦È=0£»
µ±n=2k-1ÎªÆæº¯Êýʱ£¬an=$sin\frac{2k-1}{2}¦Ð$•tann¦È=£¨-1£©k-1tann¦È=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®
£¨2£©a2k-1+a2k=£¨-1£©${\;}^{\frac{n-1}{2}}$tann¦È£®¡àÆæÊýÏî³ÉµÈ±ÈÊýÁУ¬Ê×ÏîΪtan¦È£¬¹«±ÈΪ-tan2¦È£®
¡àS2n=$\frac{tan¦È[1-£¨-1£©^{n}ta{n}^{2n}¦È]}{1-£¨-ta{n}^{2}¦È£©}$=$\frac{1}{2}$sin2¦È•[1+£¨-1£©n+1tan2n¦È]£®
µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½¡¢µÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\sqrt{2}$ | B£® | $\frac{\sqrt{21}}{2}$ | C£® | 2 | D£® | 2$\sqrt{2}$ |
| A£® | £¨∁RB£©⊆A | B£® | B⊆A | C£® | 2¡ÊM | D£® | 1¡ÊM |
| A£® | 2$\sqrt{5}$ | B£® | 4$\sqrt{5}$ | C£® | 8$\sqrt{5}$ | D£® | 20 |
| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{5}$ |
| A£® | y=x3 | B£® | y=2x | ||
| C£® | y=[x]£¨²»³¬¹ýxµÄ×î´óÕûÊý£© | D£® | y=|x| |
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{2¦Ð}{3}$ | C£® | $\frac{4¦Ð}{3}$ | D£® | $\frac{¦Ð}{6}$ |