ÌâÄ¿ÄÚÈÝ
ÈôÅ×ÎïÏßy2=4xµÄ½¹µãÓëÍÖÔ²µÄÓÒ½¹µãÖØºÏ£¬ÍÖÔ²ÓëÖáµÄÉϰëÖá½»ÓÚµãB2£¬ÓëÖáµÄÓÒ°ëÖá½»ÓÚµãA2£¬ÍÖÔ²µÄ×ó¡¢ÓÒ½¹µãΪF1¡¢F2£¬ÇÒ3|
|cos¡ÏB2F1F2=
|
|
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãD£¨0£¬2£©µÄÖ±Ïߣ¬Ð±ÂÊΪk£¨k£¾0£©£¬ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£®
£¨i£©ÈôM£¬NµÄÖеãΪH£¬ÇÒ´æÔÚ·ÇÁãʵÊý£¬Ê¹µÃ
=¦Ë
£¬Çó³öбÂÊkµÄÖµ£»
£¨ii£©ÔÚÖáÉÏÊÇ·ñ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¿Èô´æÔÚÇó³ömµÄ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| F1B2 |
| 3 |
| OB2 |
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãD£¨0£¬2£©µÄÖ±Ïߣ¬Ð±ÂÊΪk£¨k£¾0£©£¬ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£®
£¨i£©ÈôM£¬NµÄÖеãΪH£¬ÇÒ´æÔÚ·ÇÁãʵÊý£¬Ê¹µÃ
| OH |
| A2B2 |
£¨ii£©ÔÚÖáÉÏÊÇ·ñ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¿Èô´æÔÚÇó³ömµÄ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃÍÖÔ²µÄ½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®b=
c=
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬ÓÉ
£¬µÃ£¨4k2+3£©x2+16kx+4=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Öеã×ø±ê¹«Ê½¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öбÂÊkµÄÖµ£®
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐÎÓÉkHQ•kMN=-1£¬µÃm=-
=-
¡Ý-
£¬ÓÉ´ËÄÜÇó³ömµÄ·¶Î§£®
| 3 |
| 3 |
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬ÓÉ
|
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐÎÓÉkHQ•kMN=-1£¬µÃm=-
| 2k |
| 4k2+3 |
| 2 | ||
4k+
|
| ||
| 6 |
½â´ð£º
½â£º£¨1£©Å×ÎïÏßy2=4xµÄ½¹µãΪ£¨1£¬0£©£¬
¡àÍÖÔ²µÄ½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
Éè¶Ì°ëÖ᳤b£¬³¤°ëÖ᳤a£¬
¡ß|
|cos¡ÏB2F1F2=
|
|£¬
¡àb=
c=
£¬a=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ
+
=1£®
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬
ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬
ÓÉ
£¬µÃ£¨4k2+3£©x2+16kx+4=0£¬
¡÷=12k2-3£¾0£¬ÓÉk£¾0£¬½âµÃk£¾
£¬
x1+x2=
£¬x1x2=
£¬
MNµÄÖеãH£¨
£¬
£©£¬
ÓÖ
¡Î
£¬
kOH=
=kA1B1=
=-
£¬
½âµÃk=
£¾
£¬¡àk=
£®
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
ÔòHQ¡ÍMN£¬kHQ•kMN=-1£¬
•k=-1£¬
¡ßk£¾
£¬¡àm=-
=-
¡Ý-
=-
£¬
µ±ÇÒ½öµ±4k=
£¬k£¾
£¬¼´k=
ʱ£¬È¡µÈºÅ£¬
ÓÖm=-
£¼0£¬
¹ÊÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
mµÄ·¶Î§ÊÇ[-
£¬0£©£®
¡àÍÖÔ²µÄ½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
Éè¶Ì°ëÖ᳤b£¬³¤°ëÖ᳤a£¬
¡ß|
| F2B2 |
| ||
| 3 |
| OB2 |
¡àb=
| 3 |
| 3 |
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬
ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬
ÓÉ
|
¡÷=12k2-3£¾0£¬ÓÉk£¾0£¬½âµÃk£¾
| 1 |
| 2 |
x1+x2=
| -16k |
| 4k2+3 |
| 4 |
| 4k2+3 |
MNµÄÖеãH£¨
| -8k |
| 4k2+3 |
| 6 |
| 4k2+3 |
ÓÖ
| OH |
| A2B2 |
kOH=
| ||
|
| ||
| 0-2 |
| ||
| 2 |
½âµÃk=
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
ÔòHQ¡ÍMN£¬kHQ•kMN=-1£¬
| ||
|
¡ßk£¾
| 1 |
| 2 |
| 2k |
| 4k2+3 |
| 2 | ||
4k+
|
| 2 | ||||
2
|
| ||
| 6 |
µ±ÇÒ½öµ±4k=
| 3 |
| k |
| 1 |
| 2 |
| ||
| 2 |
ÓÖm=-
| 2k |
| 4k2+3 |
¹ÊÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
mµÄ·¶Î§ÊÇ[-
| ||
| 6 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éбÂÊkµÄÖµµÄÇ󷨣¬¿¼²éʵÊýµÄȡֵ·¶Î§µÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Å×ÎïÏßy2=
xµÄ½¹µã×ø±êÊÇ£¨¡¡¡¡£©
| 1 |
| 4 |
| A¡¢£¨1£¬0£© | ||
B¡¢£¨
| ||
| C¡¢£¨0£¬1£© | ||
D¡¢£¨0£¬
|