ÌâÄ¿ÄÚÈÝ

ÈôÅ×ÎïÏßy2=4xµÄ½¹µãÓëÍÖÔ²µÄÓÒ½¹µãÖØºÏ£¬ÍÖÔ²ÓëÖáµÄÉϰëÖá½»ÓÚµãB2£¬ÓëÖáµÄÓÒ°ëÖá½»ÓÚµãA2£¬ÍÖÔ²µÄ×ó¡¢ÓÒ½¹µãΪF1¡¢F2£¬ÇÒ3|
F1B2
|cos¡ÏB2F1F2=
3
|
OB2
|
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãD£¨0£¬2£©µÄÖ±Ïߣ¬Ð±ÂÊΪk£¨k£¾0£©£¬ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£®
£¨i£©ÈôM£¬NµÄÖеãΪH£¬ÇÒ´æÔÚ·ÇÁãʵÊý£¬Ê¹µÃ
OH
=¦Ë
A2B2
£¬Çó³öбÂÊkµÄÖµ£»
£¨ii£©ÔÚÖáÉÏÊÇ·ñ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¿Èô´æÔÚÇó³ömµÄ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃÍÖÔ²µÄ½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®b=
3
c=
3
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬ÓÉ
y=kx+2£¬k£¾0
x2
4
+
y2
3
=1
£¬µÃ£¨4k2+3£©x2+16kx+4=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Öеã×ø±ê¹«Ê½¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öбÂÊkµÄÖµ£®
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐÎÓÉkHQ•kMN=-1£¬µÃm=-
2k
4k2+3
=-
2
4k+
3
k
¡Ý-
3
6
£¬ÓÉ´ËÄÜÇó³ömµÄ·¶Î§£®
½â´ð£º ½â£º£¨1£©Å×ÎïÏßy2=4xµÄ½¹µãΪ£¨1£¬0£©£¬
¡àÍÖÔ²µÄ½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
Éè¶Ì°ëÖ᳤b£¬³¤°ëÖ᳤a£¬
¡ß|
F2B2
|cos¡ÏB2F1F2=
3
3
|
OB2
|
£¬
¡àb=
3
c=
3
£¬a=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2
4
+
y2
3
=1
£®
£¨2£©ÓÉÌâÒâÉèÖ±Ïߵķ½³ÌΪy=kx+2£¬k£¾0£¬
ËüÓëÍÖÔ²½»ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Á½µã£¬
ÓÉ
y=kx+2£¬k£¾0
x2
4
+
y2
3
=1
£¬µÃ£¨4k2+3£©x2+16kx+4=0£¬
¡÷=12k2-3£¾0£¬ÓÉk£¾0£¬½âµÃk£¾
1
2
£¬
x1+x2=
-16k
4k2+3
£¬x1x2=
4
4k2+3
£¬
MNµÄÖеãH£¨
-8k
4k2+3
£¬
6
4k2+3
£©£¬
ÓÖ
OH
¡Î
A2B2
£¬
kOH=
6
4k2+3
-8k
4k2+3
=kA1B1=
3
-0
0-2
=-
3
2
£¬
½âµÃk=
3
2
£¾
1
2
£¬¡àk=
3
2
£®
£¨3£©ÉèÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
ÔòHQ¡ÍMN£¬kHQ•kMN=-1£¬
6
4k2+3
-0
-8k
4k2+3
-m
•k=-1£¬
¡ßk£¾
1
2
£¬¡àm=-
2k
4k2+3
=-
2
4k+
3
k
¡Ý-
2
2
4k•
3
k
=-
3
6
£¬
µ±ÇÒ½öµ±4k=
3
k
£¬k£¾
1
2
£¬¼´k=
3
2
ʱ£¬È¡µÈºÅ£¬
ÓÖm=-
2k
4k2+3
£¼0
£¬
¹ÊÔÚÖáÉÏ´æÔÚµãQ£¨m£¬0£©£¬Ê¹µÃÒÔQM£¬QNΪÁڱߵÄËıßÐÎÊǸöÁâÐΣ¬
mµÄ·¶Î§ÊÇ[-
3
6
£¬0£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éбÂÊkµÄÖµµÄÇ󷨣¬¿¼²éʵÊýµÄȡֵ·¶Î§µÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø