题目内容

19.数列{an}的通项公式为an=an-1+lg2n(a>0),则此数列的前n项和为$\left\{\begin{array}{l}{\frac{lg2}{2}{n}^{2}+n(1+\frac{1}{2}lg2),a=1}\\{\frac{1-{a}^{n}}{1-a}+\frac{n(n-1)}{2}lg2,a>0且a≠1}\end{array}\right.$.

分析 对a分类讨论,再利用等差数列与等比数列的前n项和公式即可得出.

解答 解:an=an-1+lg2n=an-1+nlg2,
设则此数列的前n项和为Sn
当a=1时,an=1+nlg2,
∴Sn=(1+lg2)n+$\frac{n(n-1)}{2}×lg2$=$\frac{lg2}{2}$n2+n(1+$\frac{1}{2}$lg2).
当a>0,且a≠1时,Sn=$\frac{1-{a}^{n}}{1-a}$+$\frac{n(n+1)}{2}$lg2.
综上可得:Sn=$\left\{\begin{array}{l}{\frac{lg2}{2}{n}^{2}+n(1+\frac{1}{2}lg2),a=1}\\{\frac{1-{a}^{n}}{1-a}+\frac{n(n-1)}{2}lg2,a>0且a≠1}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{lg2}{2}{n}^{2}+n(1+\frac{1}{2}lg2),a=1}\\{\frac{1-{a}^{n}}{1-a}+\frac{n(n-1)}{2}lg2,a>0且a≠1}\end{array}\right.$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网