ÌâÄ¿ÄÚÈÝ
11£®É趯µãMµ½×ø±êÔµãOµÄ¾àÀëºÍËüµ½Ö±ÏßµÄl£ºx=-m£¨m£¾0£©¾àÀëÖ®±ÈÊÇÒ»¸ö³£Êý¦Ë£¬¼ÇµãµÄ¹ì¼£ÎªÇúÏßC£®£¨1£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÌÖÂÛCµÄÐÎ×´Óë¦ËÖµµÄ¹ØÏµ£»
£¨2£©Èô¦Ë=$\frac{{\sqrt{2}}}{2}$£¬m=1ʱ£¬µÃµ½µÄÇúÏßΪC1£¬½«ÇúÏßC1Ïò×óÆ½ÒÆÒ»¸öµ¥Î»µÃµ½ÇúÏßE£¬¹ýµãP£¨-2£¬0£©µÄÖ±Ïßl1ÓëÇúÏßE½»ÓÚ²»Í¬µÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¹ýF£¨1£¬0£©µÄÖ±ÏßAF£¬BF·Ö±ð½»ÇúÏßEÓÚD£¬Q£¬Éè$\overrightarrow{AF}=¦Á\overrightarrow{FD}£¬\overrightarrow{BF}=¦Â\overrightarrow{FQ}$£¬¦Á£¬¦Â¡ÊR£¬Çó¦Á+¦ÂµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÉèM£¨x£¬y£©£¬ÓÉÌâÉèÓУº$\sqrt{{x^2}+{y^2}}=¦Ë|{x+m}|$£¬¹ÊÇúÏßCµÄ·½³ÌΪ£º£¨1-¦Ë2£©x2+y2-2m¦Ë2x-m2¦Ë2=0£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©·ÖÀàÌÖÂÛ£¬È·¶¨¦Á=3-2x1£¬¦Â=3-2x2⇒¦Á+¦Â=6-2£¨x1+x2£©£¬Éèl1£ºy=k£¨x+2£©£¬ÓÉ$\left\{{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨2k2+1£©x2+8k2x+8k2-2=0£¬ÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèM£¨x£¬y£©£¬ÓÉÌâÉèÓУº$\sqrt{{x^2}+{y^2}}=¦Ë|{x+m}|$
¹ÊÇúÏßCµÄ·½³ÌΪ£º£¨1-¦Ë2£©x2+y2-2m¦Ë2x-m2¦Ë2=0
£¨i£©¦Ë=1ʱ£¬ÇúÏßCµÄ·½³ÌΪ£ºy2=2m£¨x+m£©ÊÇÅ×ÎïÏߣ»
£¨ii£©¦Ë¡Ù1ʱ£¬ÇúÏßCµÄ·½³ÌΪ£º$\frac{{{{£¨x-\frac{{m{¦Ë^2}}}{{1-{¦Ë^2}}}£©}^2}}}{{\frac{{{m^2}{¦Ë^2}}}{{{{£¨1-{¦Ë^2}£©}^2}}}}}+\frac{y^2}{{\frac{{{m^2}{¦Ë^2}}}{{1-{¦Ë^2}}}}}=1$¦Ë£¾1ʱ£¬ÇúÏßCµÄ·½³ÌΪ½¹µãÔÚxÖáÉϵÄË«ÇúÏߣ» 0£¼¦Ë£¼1ʱ£¬ÇúÏßCµÄ·½³ÌΪ½¹µãÔÚxÖáÉϵÄÍÖÔ²£»
£¨2£©µ±$¦Ë=\frac{{\sqrt{2}}}{2}£¬m=1$ʱ£¬ÇúÏßC1µÄ·½³ÌΪ£º$\frac{{{{£¨x-1£©}^2}}}{2}+{y^2}=1$£¬ÔòÇúÏßEµÄ·½³ÌΪ£º$\frac{x^2}{2}+{y^2}=1$£¬
ÉèD£¨x3£¬y3£©£¬Ôò$\overrightarrow{AF}=£¨1-{x_1}£¬-{y_1}£©£¬\overrightarrow{FD}=£¨{x_3}-1£¬{y_3}£©$£¬ÓÉ$\overrightarrow{AF}=¦Á\overrightarrow{FD}$£¬µÃ-y1=¦Áy3£¬Ôò$¦Á=-\frac{y_1}{y_3}$£¬
£¨i£©ADÓëxÖá²»´¹Ö±Ê±£¬AD·½³ÌΪ£º$y=\frac{y_1}{{{x_1}-1}}£¨x-1£©$ÓÉ $\left\{{\begin{array}{l}{y=\frac{y_1}{{{x_1}-1}}£¨x-1£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥x£¬ÕûÀíµÃ£º$£¨3-2{x_1}£©{y^2}+2{y_1}£¨{x_1}-1£©y-y_1^2=0$£®
ÓɸùÓëϵÊýµÄ¹ØÏµÓУº${y_1}{y_3}=-\frac{y_1^2}{{3-2{x_1}}}⇒-\frac{y_1}{y_3}=3-2{x_1}⇒¦Á=3-2{x_1}$£»
£¨ii£©ADÓëxÖᴹֱʱ£¬x1=1£¬¦Á=1Ò²Âú×㣺¦Á=3-2x1£¬
ͬÀí¿ÉÖ¤£º¦Â=3-2x2⇒¦Á+¦Â=6-2£¨x1+x2£©
Éèl1£ºy=k£¨x+2£©£¬ÓÉ$\left\{{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨2k2+1£©x2+8k2x+8k2-2=0£¬
¾ÝÌâÉèÓÐk¡Ù0ÇÒ¡÷=£¨8k2£©-24£¨2k2+1£©£¨8k2-2£©£¾0£¬¡à0£¼k2£¼$\frac{1}{2}$£¬${x_1}+{x_2}=-\frac{{8{k^2}}}{{2{k^2}+1}}⇒¦Á+¦Â=6+\frac{{16{k^2}}}{{2{k^2}+1}}=14-\frac{8}{{2{k^2}+1}}$£¬$0£¼{k^2}£¼\frac{1}{2}⇒1£¼2{k^2}+1£¼2$£¬
¡à¦Á+¦Â¡Ê£¨6£¬10£©£¬¹Ê¦Á+¦ÂµÄȡֵ·¶Î§Îª£¨6£¬10£©£®
µãÆÀ ±¾Ì⿼²éÇúÏßÓë·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{\sqrt{3}}{3}$ | B£® | 1 | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\sqrt{3}$ |
| A£® | 5 | B£® | 10 | C£® | 2$\sqrt{6}$ | D£® | 4$\sqrt{6}$ |
| A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{6}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{12}$ |