题目内容
在正方体ABCD-A1B1C1D!中,M、N、P、Q分别是AB、AA1、C1D1、CC1的中点,给出以下四个结论:
①AC1⊥MN; ②AC1∥平面MNPQ; ③AC1与PM相交;④NC1与PM异面,
其中正确结论的序号是 .
①AC1⊥MN; ②AC1∥平面MNPQ; ③AC1与PM相交;④NC1与PM异面,
其中正确结论的序号是
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:在正方体ABCD-A1B1C1D1中,∴A1D⊥AD1,
∵CD⊥面AA1D1D,AD1?面AA1D1D,
∴CD⊥AD1,
∴AD1⊥面A1CD,∴A1C⊥AD1
∵M,N分别是AA1,A1D1的中点,∴AD1∥MN,即A1C⊥MN,故①正确;
由于M,N,P,Q分别是AA1,A1D1,CC1,BC的中点,
则A1C与PM相交,故②不正确,③正确;
∵N∉面ACC1A1,而M,P,C∈面ACC1A1,∴NC与PM异面,故④正确;
故答案为:①③④.
∵CD⊥面AA1D1D,AD1?面AA1D1D,
∴CD⊥AD1,
∴AD1⊥面A1CD,∴A1C⊥AD1
∵M,N分别是AA1,A1D1的中点,∴AD1∥MN,即A1C⊥MN,故①正确;
由于M,N,P,Q分别是AA1,A1D1,CC1,BC的中点,
则A1C与PM相交,故②不正确,③正确;
∵N∉面ACC1A1,而M,P,C∈面ACC1A1,∴NC与PM异面,故④正确;
故答案为:①③④.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
函数y=lg(kx2-2x+1)值域为R,则k的取值范围是( )
| A、(0,+∞) |
| B、(1,+∞) |
| C、(0,2) |
| D、[0,1] |