题目内容

19.已知F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P是该双曲线上的任意一点,若△PF1F2的内切圆半径为r,则r的取值范围是(  )
A.(0,a)B.(0,b)C.(0,$\sqrt{{a}^{2}+{b}^{2}}$)D.(0,$\sqrt{ab}$)

分析 根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标,即可求出△PF1F2的内切圆半径的取值范围.

解答 解:如图所示:F1(-c,0)、F2(c,0),
设内切圆与x轴的切点是点H,P在双曲线的右支上
PF1、PF2与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,
由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,
设内切圆的圆心I横坐标为x,内切圆半径r,则点H的横坐标为x,
故 (x+c)-(c-x)=2a,∴x=a,
设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线的方程为y=±$\frac{b}{a}$x,
一条渐近线的倾斜角为2α,则tan2α=$\frac{b}{a}$,
由PF1的斜率小于渐近线的斜率,
∴$\frac{2•\frac{r}{c+a}}{1-\frac{{r}^{2}}{(c+a)^{2}}}$<$\frac{b}{a}$,
故2rca+2ra2<b(c+a)2-br2
∴r(c+a)2-rb2<b(c+a)2-br2
∴(r-b)[br+(a+c)2]<0,
∴0<r<b.
故选B.

点评 本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网