题目内容

已知tanA=
3
4
,则sin2A=(  )
A、
24
25
B、-
24
25
C、±
24
25
D、±
12
25
考点:二倍角的正弦,同角三角函数基本关系的运用
专题:三角函数的求值
分析:把tanA=
3
4
代入sin2A=
2sinAcosA
cos2A+sin2A
=
2tanA
1+tan2A
,计算求得结果.
解答: 解:∵tanA=
3
4
,∴sin2A=
2sinAcosA
cos2A+sin2A
=
2tanA
1+tan2A
=
3
2
1+
9
16
=
24
25

故选:A.
点评:本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网