题目内容

16.已知函数f(x)=lgx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$[f(a)+f(b)],则p,q,r的大小关系是(  )
A.p=r>qB.p=r<qC.q=r<pD.q-r>p

分析 直接利用对数的运算性质可得p=r,再由基本不等式及对数函数的单调性可得p<q,则答案可求.

解答 解:∵p=f($\sqrt{ab}$)=lg$\sqrt{ab}$=$\frac{1}{2}$(lga+lgb),
r=$\frac{1}{2}$[f(a)+f(b)]=$\frac{1}{2}$(lga+lgb),
∴p=r,
又q=f($\frac{a+b}{2}$)=lg$\frac{a+b}{2}$,
而$\frac{a+b}{2}>\sqrt{ab}$,∴q>p=r.
故选:B.

点评 本题考查对数的运算性质,考查了基本不等式的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网