题目内容
16.已知A,B,C三点不共线,A,B,D三点共线,$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,则△CDB面积和△CDA的面积之比为1:1.分析 根据A,B,D三点共线,得出t+(2+t)=1,求出t的值,化简$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$,D是AB的中点,即可求出面积比是多少.
解答
解:∵A,B,D三点共线,且$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,
∴t+(2+t)=1,
解得t=-$\frac{1}{2}$;
∴$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{3}{2}$$\overrightarrow{CB}$,
∴$\overrightarrow{CD}$-$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{CB}$-$\overrightarrow{CA}$),
即$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$;如图所示,
∴BD=$\frac{1}{2}$AB,即BD=AD;
∴△CDB的面积和△CDA的面积之比为1:1.
故答案为:1:1.
点评 本题考查了平面向量的应用问题,解题的关键是利用三点共线求出t的值,化简$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出D是AB的中点,是综合性题目.
| A. | (-3,-2$\sqrt{5}$+3) | B. | (-∞,-2$\sqrt{5}$+3) | C. | (-$\frac{1}{2}$,4-$\sqrt{17}$) | D. | (-∞,4-$\sqrt{17}$) |