题目内容

6.已知抛物线y2=4x的焦点为F,过点(a,0)(a<0)倾斜角为$\frac{π}{6}$的直线l交抛物线C、D两点.若F在以线段CD为直径的圆的外部,则a的取值范围为(  )
A.(-3,-2$\sqrt{5}$+3)B.(-∞,-2$\sqrt{5}$+3)C.(-$\frac{1}{2}$,4-$\sqrt{17}$)D.(-∞,4-$\sqrt{17}$)

分析 设直线l的方程与抛物线方程联立,利用韦达定理及F在以线段CD为直径的圆的外部,建立不等式,即可确定a的取值范围.

解答 解:设C(x1,y1),D(x2,y2),
∵F在以线段CD为直径的圆的外部,
∴$\overrightarrow{FC}•\overrightarrow{FD}$>0,
∴(x1-1)(x2-1)+y1y2>0,
于是(x1-1)(x2-1)+y1y2=4x1x2-(a+3)(x1+x2)+3+a2>0
设l的方程为:y=$\frac{\sqrt{3}}{3}$(x-a),
代入抛物线方程,得x2-(2a+12)x+a2=0,
∴x1+x2=2a+12,x1x2=a2
∴4x1x2-(a+3)(x1+x2)+3+a2=3a2-18a-33>0,
故a>2$\sqrt{5}$+3或a<-2$\sqrt{5}$+3,
又△=(2a+12)2-4a2>0,得到a>-3.
∴-3<a<-2$\sqrt{5}$+3.
故选:A.

点评 本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查向量知识的运用,正确运用韦达定理是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网