题目内容
已知半径为2,圆心在直线y=-x+2上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与y轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值范围.
(Ⅰ)当圆C经过点A(2,2)且与y轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值范围.
考点:直线和圆的方程的应用
专题:综合题,直线与圆
分析:(Ⅰ)可设圆心坐标为(a,-a+2),圆的方程为(x-a)2+[y-(-a+2)]2=4,利用圆经过点A(2,2)且与y轴相切,建立方程,即可求圆C的方程;
(Ⅱ)设Q(x,y),则由|QF|2-|QE|2=32得y=3,即Q在直线y=3上,根据Q在(x-a)2+[y-(-a+2)]2=4上,可得⊙C与直线y=3有交点,从而可求圆心的横坐标a的取值范围.
(Ⅱ)设Q(x,y),则由|QF|2-|QE|2=32得y=3,即Q在直线y=3上,根据Q在(x-a)2+[y-(-a+2)]2=4上,可得⊙C与直线y=3有交点,从而可求圆心的横坐标a的取值范围.
解答:
解:(Ⅰ)∵圆心在直线y=-x+2上,
∴可设圆心坐标为(a,-a+2),圆的方程为(x-a)2+[y-(-a+2)]2=4,
∵圆经过点A(2,2)且与y轴相切,
∴有
解得a=2,
∴所求方程是:(x-2)2+y2=4;
(Ⅱ)设Q(x,y),则由|QF|2-|QE|2=32得:(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,即y=3,
∴Q在直线y=3上,
∵Q在(x-a)2+[y-(-a+2)]2=4上,
∴⊙C与直线y=3有交点,
∵⊙C的圆心纵坐标为-a+2,半径为2,
∴⊙C与直线y=3有交点的充要条件是1≤-a+2≤5,
∴-3≤a≤1,即圆心的横坐标a的取值范围是-3≤a≤1.
∴可设圆心坐标为(a,-a+2),圆的方程为(x-a)2+[y-(-a+2)]2=4,
∵圆经过点A(2,2)且与y轴相切,
∴有
|
解得a=2,
∴所求方程是:(x-2)2+y2=4;
(Ⅱ)设Q(x,y),则由|QF|2-|QE|2=32得:(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,即y=3,
∴Q在直线y=3上,
∵Q在(x-a)2+[y-(-a+2)]2=4上,
∴⊙C与直线y=3有交点,
∵⊙C的圆心纵坐标为-a+2,半径为2,
∴⊙C与直线y=3有交点的充要条件是1≤-a+2≤5,
∴-3≤a≤1,即圆心的横坐标a的取值范围是-3≤a≤1.
点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
由389化为的四进制数的末位为( )
| A、3 | B、2 | C、1 | D、0 |