题目内容

设AB是椭圆的长轴,点C在椭圆上,且∠CBA=
π
4
.若AB=4,BC=
2
,则椭圆的焦距为(  )
A、
3
3
B、
2
6
3
C、
4
6
3
D、
2
3
3
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设椭圆的标准方程为
x2
a2
+
y2
b2
=1
,由已知条件推导出2a=4,点C的坐标为C(-1,1),由此能求出c=
2
6
3
,从而能求出椭圆的焦距.
解答:  解:如图,设椭圆的标准方程为
x2
a2
+
y2
b2
=1

由题意知,2a=4,a=2.
∵∠CBA=
π
4
,BC=
2
,可设C(y0-2,y0),
∵B(-2,0),
BC
=(y0,y0),
∴|
BC
|=
2
y0
=
2
,解得y0=1,
∴点C的坐标为C(-1,1),
∵点C在椭圆上,∴
(-1)2
4
+
12
b2
=1

∴b2=
4
3

∴c2=a2-b2=4-
4
3
=
8
3
,c=
2
6
3

∴椭圆的焦距为
4
6
3

故选:C.
点评:本题考查椭圆的焦距的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网