题目内容
20.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于( )| A. | -10 | B. | 10 | C. | -20 | D. | 20 |
分析 (1+x)10=[2-(1-x)]10=210-${∁}_{10}^{1}{2}^{9}(1-x)$+…-${∁}_{10}^{9}×2×(1-x)^{9}$+(1-x)10,即可得出.
解答 解:(1+x)10=[2-(1-x)]10=210-${∁}_{10}^{1}{2}^{9}(1-x)$+…-${∁}_{10}^{9}×2×(1-x)^{9}$+(1-x)10,
可得a9=-2${∁}_{10}^{9}$=-20.
故选:C.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x}}{ex}},x>0\end{array}\right.$(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是( )
| A. | (-∞,0) | B. | (-e,e) | C. | (-1,1) | D. | (0,+∞) |
9.已知命题$p:?x∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$,则¬p为( )
| A. | $?{x_0}∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$ | B. | $?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | ||
| C. | $?x∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | D. | 不存在${x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ |