ÌâÄ¿ÄÚÈÝ
7£®Èôº¯Êýg£¨x£©Âú×ãg£¨g£¨x£©£©=n£¨n¡ÊN£©ÓÐn+3¸ö½â£¬Ôò³Æº¯Êýg£¨x£©Îª¡°¸´ºÏn+3½â¡±º¯Êý£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{kx+3£¬x¡Ü0}\\{\frac{{e}^{x}}{ex}}£¬x£¾0\end{array}\right.$£¨ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.71828¡£¬k¡ÊR£©£¬ÇÒº¯Êýf£¨x£©Îª¡°¸´ºÏ5½â¡±º¯Êý£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | £¨-¡Þ£¬0£© | B£® | £¨-e£¬e£© | C£® | £¨-1£¬1£© | D£® | £¨0£¬+¡Þ£© |
·ÖÎö ÓÉÌâÒâ¿ÉµÃf£¨f£¨x£©£©=2£¬ÓÐ5¸ö½â£¬Éèt=f£¨x£©£¬f£¨t£©=2£¬µ±x£¾0ʱ£¬ÀûÓõ¼ÊýÇó³öº¯ÊýµÄ×îÖµ£¬µÃµ½f£¨t£©=2ÔÚ[1£¬+¡Þ£©ÓÐ2¸ö½â£¬
£¬µ±x£¼0ʱ£¬¸ù¾Ýº¯Êýºã¹ýµã£¨0£¬3£©£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉÇó³öµ±k£¾0ʱ£¬f£¨t£©=2ʱÓÐ3¸ö½â£¬ÎÊÌâµÃÒÔ½â¾ö£®
½â´ð
½â£ºº¯Êýf£¨x£©Îª¡°¸´ºÏ5½â¡°£¬
¡àf£¨f£¨x£©£©=2£¬ÓÐ5¸ö½â£¬
Éèt=f£¨x£©£¬
¡àf£¨t£©=2£¬
¡ßµ±x£¾0ʱ£¬f£¨x£©=$\frac{{e}^{x}}{ex}$=$\frac{{e}^{x-1}}{x}$£¬
¡àf£¨x£©=$\frac{{e}^{x-1}£¨x-1£©}{{x}^{2}}$£¬
µ±0£¼x£¼1ʱ£¬f¡ä£¨x£©£¼0£¬º¯Êýf£¨x£©µ¥µ÷µÝ¼õ£¬
µ±x£¾1ʱ£¬f¡ä£¨x£©£¾0£¬º¯Êýf£¨x£©µ¥µ÷µÝÔö£¬
¡àf£¨x£©min=f£¨1£©=1£¬
¡àt¡Ý1£¬
¡àf£¨t£©=2ÔÚ[1£¬+¡Þ£©ÓÐ2¸ö½â£¬
µ±x¡Ü0ʱ£¬f£¨x£©=kx+3£¬º¯Êýf£¨x£©ºã¹ýµã£¨0£¬3£©£¬
µ±k¡Ü0ʱ£¬f£¨x£©¡Ýf£¨0£©=3£¬
¡àt¡Ý3
¡ßf£¨3£©=$\frac{{e}^{2}}{3}$£¾2£¬
¡àf£¨t£©=2ÔÚ[3£¬+¡Þ£©ÉÏÎ޽⣬
µ±k£¾0ʱ£¬f£¨x£©¡Üf£¨0£©=3£¬
¡àf£¨t£©=2£¬ÔÚ£¨0£¬3]ÉÏÓÐ2¸ö½â£¬ÔÚ£¨¡Þ£¬0]ÉÏÓÐ1¸ö½â£¬
×ÛÉÏËùÊöf£¨f£¨x£©£©=2ÔÚk£¾0ʱ£¬ÓÐ5¸ö½â£¬
¹ÊÑ¡£ºD
µãÆÀ ±¾Ì⿼²éÁËж¨ÒåµÄÓ¦ÓÃÒÔ¼°º¯ÊýµÄ½âµÃÎÊÌâÒÔ¼°µ¼ÊýºÍº¯ÊýµÄ×îÖµÎÊÌ⣬¹Ø¼üÊÇÇó³öf£¨t£©µÄ¶¨ÒåÓò£¬ÊôÓÚÄÑÌ⣮
| A£® | £¨-¡Þ£¬0£© | B£® | £¨-e£¬e£© | C£® | £¨-1£¬1£© | D£® | £¨0£¬+¡Þ£© |
¼×ͼÊé¹Ý
| ½èÊéµÈ´ýʱ¼äT1£¨·ÖÖÓ£© | 1 | 2 | 3 | 4 | 5 |
| ƵÊý | 1500 | 1000 | 500 | 500 | 1500 |
| ½èÊéµÈ´ýʱ¼äT2£¨·ÖÖÓ£© | 1 | 2 | 3 | 4 | 5 |
| ƵÊý | 1000 | 500 | 2000 | 1250 | 250 |
£¨2£©ÒÔ±íÖеȴýʱ¼äµÄѧÉúÈËÊýµÄƵÂÊΪ¸ÅÂÊ£¬ÈôijͬѧϣÍû½èÊéµÈ´ýʱ¼ä²»³¬¹ý3·ÖÖÓ£¬ÇëÎÊÔÚÄĸöͼÊé¹Ý½è¸üÄÜÂú×ãËûµÄÒªÇó£¿