题目内容

9.已知命题$p:?x∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$,则¬p为(  )
A.$?{x_0}∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$B.$?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$
C.$?x∈({0,+∞}),lnx<2\frac{x-1}{x+1}$D.不存在${x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$

分析 利用全称命题的否定是特称命题,可以求出¬p.

解答 解:因为命题p是全称命题,所以利用全称命题的否定是特称命题可得:
¬p$?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$
故选:B

点评 本题主要考查了含有量词的命题的否定,要求掌握含有量词的命题的否定的两种形式,全称命题的否定是特称命题,特称命题的否定是全称命题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网