题目内容
| A、54cm2 |
| B、24cm2 |
| C、18cm2 |
| D、12cm2 |
考点:相似三角形的性质
专题:计算题,立体几何
分析:由四边形ABCD为平行四边形,易判断出△AEF与△CDF相似,进而可得△AEF与△ABC的面积的比,结合△AEF的面积等于6cm2,求出平行四边形ABCD的面积,即可求出S△ADF.
解答:
解:∵AE∥CD,∴△AEF∽△CDF,
∴AE:CD=AF:CF,
∵AE:EB=1:2,
∴AE:AB=AE:CD=1:3,
∴AF:CF=1:3,
∴AF:AC=1:4,
∴△AEF与△ABC的高的比为1:4,
∴△AEF与△ABC的面积的比为1:12,
∴△AEF与平行四边形ABCD的面积的比为1:24,
∵△AEF的面积等于6cm2,
∴平行四边形ABCD的面积等于144cm2.
∵AF:AC=1:4,
∴S△ADF=18cm2.
故选:C.
∴AE:CD=AF:CF,
∵AE:EB=1:2,
∴AE:AB=AE:CD=1:3,
∴AF:CF=1:3,
∴AF:AC=1:4,
∴△AEF与△ABC的高的比为1:4,
∴△AEF与△ABC的面积的比为1:12,
∴△AEF与平行四边形ABCD的面积的比为1:24,
∵△AEF的面积等于6cm2,
∴平行四边形ABCD的面积等于144cm2.
∵AF:AC=1:4,
∴S△ADF=18cm2.
故选:C.
点评:本题考查相似三角形的判定,考查平行四边形面积的计算,判断出△AEF与△CDF相似,确定△AEF与△ABC的面积的比是关键.
练习册系列答案
相关题目
函数f(x)=
(x∈R)( )
| 4x |
| x2+1 |
| A、既有最大值2,又有最小值-2 |
| B、无最大值,但有最小值-2 |
| C、有最大值2,但无最小值 |
| D、既无最大值,又无最小值 |
定义两个平面向量的一种新运算
?
=|
|•|
|sin<
,
>,(其中<
,
>表示
,
的夹角),则对于两个平面向量
,
,下列结论不一定成立的是( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||||||||||||
B、(
| ||||||||||||
C、λ(
| ||||||||||||
D、若
|
已知函数f(x)=x3+ax2-x+c(x∈R),下列结论错误的是( )
| A、函数f(x)一定存在极大值和极小值 | ||||
B、若函数f(x)在(-∞,x1),(x2,+∞)上是增函数,则x2-x1≥
| ||||
| C、函数f(x)的图象是中心对称图形 | ||||
| D、函数f(x)一定存在三个零点 |
设P和Q是两个集合,定义集合P-Q={x|x∈P且x∉Q},如果P={x|x2-2x<0},Q={x|1≤x<3},那么P-Q=( )
| A、{x|0<x<1} |
| B、{x|0<x≤1} |
| C、{x|1≤x<2} |
| D、{x|2≤x<3} |