题目内容

设a1,a2,a3∈R+,且a1+a2+a3=m.求证:
(1)a12+a22+a32
m2
3
;      
(2)
1
a1
+
1
a2
+
1
a3
9
m
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:(1)(a1+a2+a32=a12+a22+a32+2a1a2+2a2a3+2a1a3≤3(a12+a22+a32),即可得出结论;
(2)根据基本不等式的性质可分别求得a1+a2+a3
1
a1
+
1
a2
+
1
a3
的最小值,两式相乘即可求得(
1
a1
+
1
a2
+
1
a3
)m的最小值,整理后原式得证.
解答: 证明:(1)(a1+a2+a32=a12+a22+a32+2a1a2+2a2a3+2a1a3≤3(a12+a22+a32),
∵a1+a2+a3=m,
∴a12+a22+a32
m2
3
;      
(2)∵(
1
a1
+
1
a2
+
1
a3
)m=(
1
a1
+
1
a2
+
1
a3
)(a1+a2+a3)≥3
3a1a2a3
3
3
1
a1
1
a2
1
a3

当且仅当a1=a2=a3=
m
3
时等号成立.
又∵m=a1+a2+a3>0,
1
a1
+
1
a2
+
1
a3
9
m
点评:本题主要考查了基本不等式的应用.解题的时候要特别注意等号成立的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网