题目内容

8.小明在花店定了一束鲜花,花店承诺将在第二天旱上7:30~8:30之间将鲜花送到小明家,若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前能收到这束鲜花的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

分析 设送花人到达的时间为x,小明离家去工作的时间为y,则(x,y)可以看成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件A所构成的区域及其面积,由几何概型公式,计算可得答案

解答 解:设送花人到达的时间为x,小明离家去工作的时间为y,记小明离家前能看到报纸为事件A;
以横坐标表示报纸送到时间,以纵坐标表示小明离家时间,建立平面直角坐标系,
小明离家前能得到报纸的事件构成区域如图示:
于随机试验落在方形区域内任何一点是等可能的,
所以符合几何概型的条件.
根据题意,只要点落到阴影部分,就表示小明在离开家前能得到鲜花,即事件A发生,
所以P(A)=1-$\frac{\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1}$=$\frac{7}{8}$;
故选D.

点评 本题考查几何概型的计算,解题的关键在于设出x、y,将(x,y)以及事件A在平面直角坐标系中表示出来,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网