题目内容

6.在正项等比数列{an}中,若a4+a3-2a2-2a1=6,则a5+a6的最小值为48.

分析 设 a2+a1=x,等比数列的公比为q,则a4+a3 =xq2,a5+a6 =xq4,由此推导出a5+a6 =6( q2-2+$\frac{4}{{q}^{2}-2}$+4 ),由此利用均值定理能求出a5+a6的最小值.

解答 解:设 a2+a1=x,等比数列的公比为q,则a4+a3 =xq2,a5+a6 =xq4
再由a4+a3-2a2-2a1=6,
得 xq2=6+2x,∴x=$\frac{6}{{q}^{2}-2}$>0,q>1.
∴a5+a6 =xq4 =$\frac{6{q}^{4}}{{q}^{2}-2}$
=6•$\frac{{q}^{4}}{{q}^{2}-2}$=6( q2+2+$\frac{4}{{q}^{2}-2}$)=6( q2-2+$\frac{4}{{q}^{2}-2}$+4 )≥6(4+4)=48,
当且仅当q2-2=2时,等号成立,
故a5+a6的最小值为48.
故答案为:48.

点评 本题考查等比数列中两项和的最小值的求法,是中档题,解题时要认真审题,注意等比数列的性质、均值定理的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网