题目内容
20.集合A={x|x2-4=0}的子集个数( )| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
分析 解方程求出集合A,从而求出A的子集的个数.
解答 解:由x2-4=0,解得:x=±2,
故A={-2,2},故子集的个数是22=4个,
故选:D.
点评 本题考查了集合的子集问题,是一道基础题.
练习册系列答案
相关题目
11.中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精确到0.01)相比于(Ⅰ)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精确到0.01)相比于(Ⅰ)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
8.已知P是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则$\frac{{2{S_1}}}{S_2}$=( )
| A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{8}{5}$ |
15.若复数(a2-l)+(a-1)i(i为虚数单位)是纯虚数,则实数a=( )
| A. | ±1 | B. | -1 | C. | 0 | D. | 1 |
5.不等式($\frac{1}{2}$-x)($\frac{1}{3}$-x)>0的解集是( )
| A. | {x|$\frac{1}{3}$<x<$\frac{1}{2}$} | B. | {x|x>$\frac{1}{2}$} | C. | {x|x<$\frac{1}{3}$} | D. | {x|x<$\frac{1}{3}$或x>$\frac{1}{2}$} |
12.在△ABC中,$\overrightarrow{AB}=(2,4)$,$\overrightarrow{AC}=(1,3)$,则$\overrightarrow{CB}$=( )
| A. | (3,7) | B. | (3,5) | C. | (1,1) | D. | (1,-1) |