题目内容
15.函数f(x)=x|2a-x|+2x,若函数f(x)在R上是增函数,则实数a的取值范围[-1,1].分析 化简可得f(x)=$\left\{\begin{array}{l}{{x}^{2}-(2a-2)x,x≥2a}\\{-{x}^{2}+(2a+2)x,x<2a}\end{array}\right.$,从而利用分段函数及二次函数的性质可得$\left\{\begin{array}{l}{2a≤a+1}\\{a-1≤2a}\end{array}\right.$,从而解得.
解答 解:f(x)=x|2a-x|+2x
=$\left\{\begin{array}{l}{{x}^{2}-(2a-2)x,x≥2a}\\{-{x}^{2}+(2a+2)x,x<2a}\end{array}\right.$,
由二次函数的性质可知,
$\left\{\begin{array}{l}{2a≤a+1}\\{a-1≤2a}\end{array}\right.$,
解得,-1≤a≤1;
故答案为:[-1,1].
点评 本题考查了分段函数的性质的应用及二次函数的性质的应用.
练习册系列答案
相关题目
10.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
若用表中数据所得频率代替率.
(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(Ⅱ)将选取的200人中会闯红灯的市民两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?
| 处罚金额x(单位:元) | 0 | 5 | 10 | 15 | 20 |
| 会闯红灯的人数y | 80 | 50 | 40 | 20 | 10 |
(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(Ⅱ)将选取的200人中会闯红灯的市民两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?
20.已知各项都为正数的数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$,且64a10-a4=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为( )
| A. | -$\frac{21}{8}$ | B. | $\frac{21}{8}$ | C. | -9 | D. | 9 |