题目内容

已知数列{an}的各项都为正数,Sn=
1
a1
+
a2
+
1
a2
+
a3
+…+
1
an
+
an+1

(1)若数列{an}是首项为1,公差为
3
2
的等差数列,求S67
(2)若Sn=
n
a1
+
an+1
,求证:数列{an}是等差数列.
考点:数列的求和,等差关系的确定,等差数列的性质
专题:等差数列与等比数列
分析:(1)运用等差数列的通项公式,求出an,考虑
1
an
+
an+1
=
2
3
an+1
-
an
),再化简Sn,再求S67
(2)运用数学归纳法证明,当n=2时,化简得到a2-a3=a1-a2即a1,a2,a3成等差数列,令n=k时,且ak+1=a1+kd,证明当n=k+1时,即k(ak+2-ak+1)=ak+1-a1,由假设即得ak+2-ak+1=d,从而得证.
解答: (1)解:若数列{an}是首项为1,公差为
3
2
的等差数列,
则an=1+
3
2
(n-1)
=
3
2
n-
1
2

1
an
+
an+1
=
an+1
-
an
an+1-an
=
2
3
an+1
-
an
),
则S67=
2
3
-
a1
+
a2
-
a2
+
a3
+…+
a68
-
a67
)=
2
3
a68
-
a1

=
2
3
406
2
-1).
(2)证明:当n=2时,S2=
2
a1
+
a3
=
1
a1
+
a2
+
1
a2
+
a3

a2
-
a3
(
a1
+
a3
)(
a1
+
a2
)
=
a1
-
a2
(
a2
+
a3
)(
a1
+
a3
)

∴a2-a3=a1-a2即a1,a2,a3成等差数列
令n=k时,
1
a1
+
a2
+
1
a2
+
a3
+…+
1
ak
+
ak+1
=
k
a1
+
ak+1
且又{ak}为等差数列且ak+1=a1+kd
当n=k+1时,
1
a1
+
a2
+
1
a2
+
a3
+…
1
ak
+
ak+1
+
1
ak+1
+
ak+2
=
k+1
a1
+
ak+2

即有
k
a1
+
ak+1
+
1
ak+1
+
ak+2
=
k+1
a1
+
ak+2

k•
ak+2
-
ak+1
(
a1
+
ak+1
)(
a1
+
ak+2
)
=
ak+1
-
a1
(
a1
+
ak+2
)(
ak+1
+
ak+2
)

即k(ak+2-ak+1)=ak+1-a1
∵ak+1=a1+kd即ak+2-ak+1=d
∴n=k+1时,{ak+1}也是等差数列,
综上得,{an}是等差数列.
点评:本题主要考查等差数列的通项和裂项相消求和法,同时考查运用数学归纳法证明数列问题,注意解题步骤,注意运用假设,本题属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网