题目内容
计算下列各式的值:
(1)(
)
-(-
)0-(
)-
;
(2)log2.56.25+lg
+ln
+21+log23.
(1)(
| 9 |
| 4 |
| 1 |
| 2 |
| 3 |
| 5 |
| 8 |
| 27 |
| 1 |
| 3 |
(2)log2.56.25+lg
| 1 |
| 100 |
| e |
考点:有理数指数幂的化简求值,对数的运算性质
专题:计算题,函数的性质及应用
分析:(1)直接利用有理指数幂的运算性质化简求值;
(2)化根式为分数指数幂,然后利用对数的运算性质化简求值.
(2)化根式为分数指数幂,然后利用对数的运算性质化简求值.
解答:
解:(1))(
)
-(-
)0-(
)-
=(
)
-1-[(
)3]-
=
-1-
=-1;
(2)log2.56.25+lg
+ln
+21+log23
=log2.52.52+lg10-2+lne
+2•2log23
=2-2+
+2×3=
.
| 9 |
| 4 |
| 1 |
| 2 |
| 3 |
| 5 |
| 8 |
| 27 |
| 1 |
| 3 |
=(
| 9 |
| 4 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
(2)log2.56.25+lg
| 1 |
| 100 |
| e |
=log2.52.52+lg10-2+lne
| 1 |
| 2 |
=2-2+
| 1 |
| 2 |
| 13 |
| 2 |
点评:本题考查了根式与分数指数幂的互化,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关题目
不等式(x-1)(x-2)≥0的解集等于( )
| A、{x|1≤x≤2} |
| B、{x|x≥2或x≤1} |
| C、{x|1<x<2} |
| D、{x|x>1或x<2} |