题目内容

lim
x→o
1+tanx
-
1+sinx
xln(1+x)-x2
=
 
考点:极限及其运算
专题:导数的综合应用
分析:多次利用“罗比达”法则即可得出.
解答: 解:∵
1+tanx
-
1+sinx
=
1+tanx-(1+sinx)
1+tanx
+
1+sinx
=
tanx-sinx
1+tanx
+
1+sinx

(tanx-sinx)′=sec2x-cosx,(xln(1+x)-x2)′=ln(1+x)+
x
1+x
-2x,
原式=
lim
x→0
tanx-sinx
xln(1+x)-x2
lim
x→0
1
1+tanx
+
1+sinx
=
lim
x→0
sec2x-cosx
ln(1+x)+
x
1+x
-2x
×
1
2

∵(sec2x-cosx)′=2sec2xtanx+sinx,(ln(1+x)+
x
1+x
-2x)
=
1
1+x
+
1
(1+x)2
-2

∴原式=
1
2
lim
x→0
2sec2xtanx+sinx
1
1+x
+
1
(1+x)2
-2

∵(2sec2xtanx+sinx)′=4sec2xtan2x+2sec4x+cosx,
(
1
1+x
+
1
(1+x)2
-2)
=-
1
(1+x)2
-
1
2(1+x)3

∴原式=
1
2
lim
x→0
4sec2xtan2x+2sec2x+cosx
-
1
(1+x)2
-
1
2(1+x)3
=
1
2
×
2+1
-1-
1
2
=-1.
故答案为:-1.
点评:本题考查了导数的运算法则、“罗比达”法则,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网