题目内容

已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.
(3)若曲线y=f(x)与直线y=b 有两个不同的交点,求b的取值范围.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)由已知中函数的解析式,求导后判断函数的单调性,进而可得f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,则f′(a)=0,b=f(a),进而可得a与b的值;
(3)当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;若曲线y=f(x)与直线y=b 有两个不同的交点,则b>1.
解答: 解:(1)由f(x)=x2+xsinx+cosx,
得f′(x)=2x+sinx+xcosx-sinx=x(2+cosx).…(1分)
令f′(x)=0,得x=0.…(2分)
列表如下:
  …(4分)
∴函数f(x)在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增,
∴f(0)=1是f(x)的最小值.…(5分)
(2)∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,
∴f′(a)=a(2+cosa)=0,b=f(a),…(7分)
解得a=0,b=f(0)=1.…(9分)
(3)当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;
当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1<b,
∴存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.…(12分)
由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,
∴当b>1时曲线y=f(x)与直线y=b有且只有两个不同交点.…(13分)
综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同交点,那么b取值范围是(1,+∞).…(14分)
点评:本题考查的知识点是导数在最大值、最小值问题中的应用,导数法研究曲线的切线,是导数较为综合的应用,难度中档.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网