题目内容
13.椭圆3x2+2y2=1的焦点坐标是( )| A. | $(0,-\frac{{\sqrt{6}}}{6}),(0,\frac{{\sqrt{6}}}{6})$ | B. | $(-\frac{{\sqrt{6}}}{6},0),(\frac{{\sqrt{6}}}{6},0)$ | C. | (-1,0),(1,0) | D. | (0,-1)、(0,1) |
分析 化简椭圆为标准方程,然后求解焦点坐标.
解答 解:椭圆3x2+2y2=1的才为:$\frac{{y}^{2}}{\frac{1}{2}}+\frac{{x}^{2}}{\frac{1}{3}}$=1,
c2=$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$,∴c=$\frac{\sqrt{6}}{6}$.
椭圆的焦点坐标为:$(0,-\frac{\sqrt{6}}{6}),(0,\frac{\sqrt{6}}{6})$.
故选:A.
点评 本题考查椭圆的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
4.下列各组向量共面的是( )
| A. | $\overrightarrow a=(1,0,-1),\overrightarrow b=(1,1,0),\overrightarrow c=(0,1,1)$ | B. | $\overrightarrow a=(1,0,0),\overrightarrow b=(0,1,-1),\overrightarrow c=(0,0,1)$ | ||
| C. | $\overrightarrow a=(1,1,1),\overrightarrow b=(1,-1,0),\overrightarrow c=(1,0,1)$ | D. | $\overrightarrow a=(1,1,0),\overrightarrow b=(1,0,1),\overrightarrow c=(0,1,1)$ |
5.下表提供了某工厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 3.6 | 4.5 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
2.已知等差数列{an}中a1=1,sn为其前n项和,且S4=S9,a4+ak=0,则实数k等于( )
| A. | 3 | B. | 6 | C. | 10 | D. | 11 |