题目内容

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α=$\frac{π}{4}$),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点.求|AB|.

分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出;
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入抛物线方程,可得根与系数的关系,利用|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.

解答 解:(1)曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐标方程:y2=4x.
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入抛物线方程可得:${t}^{2}-4\sqrt{2}t$-8=0.
∴t1+t2=4$\sqrt{2}$,t1t2=-8,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(4\sqrt{2})^{2}-4×(-8)}$=8.

点评 本题考查了极坐标化为直角坐标、直线的参数方程的应用、直线与抛物线相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网