题目内容

调查某桑场采桑员和辅助工桑毛虫皮炎发病情况结果如下表:
采桑 不采桑 合计
患者人数 18 12
健康人数 5 78
合计
利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?(注:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
考点:独立性检验的应用
专题:计算题,概率与统计
分析:根据所给的表格中的数据,代入求观测值的公式求出观测值,同临界值进行比较,得到有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系.
解答: 解:因为n11=18,n12=12,n21=5,n22=78,
所以n1+=30,n2+=83,n+1=23,n+2=90,n=113.
所以χ2=
113×(18×78-5×12)2
30×82×23×90
≈39.6>6.635.
所以有99%的把握认为“患桑毛虫皮炎病与采桑”有关系.认为两者有关系会犯错误的概率是1%.
点评:本题考查独立性检验知识及应用,考查学生的计算能力,考查学生分析解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网