题目内容

已知点F1,F2分别是双曲线的左,右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为正三角形,则该双曲线的离心率e为(  )
A、2
B、
2
C、3
D、
3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用直角三角形中含30°角所对的边的性质及其双曲线的定义、勾股定理即可得到a,c的关系.
解答: 解:由△ABF2是正三角形,则在Rt△AF1F2中,有∠AF2F1=30°,
∴|AF1|=
1
2
|AF2|,又|AF2|-|AF1|=2a.
∴|AF2|=4a,|AF1|=2a,又|F1F2|=2c,
又在Rt△AF1F2中,|AF1|2+|F1F2|2=|AF2|2
得到4a2+4c2=16a2,∴
c2
a2
=3,
∴e=
c
a
=
3

故选D.
点评:熟练掌握直角三角形中含30°角所对的边的性质及其双曲线的定义、勾股定理、离心率的计算公式等是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网