题目内容
已知正项数列{an}的前n项和为Sn,
是
与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若b1=a1,且bn=2bn-1+3(n≥2),求数列{bn}的通项公式;
(3)在(2)的条件下,若cn=
,求数列{cn}的前n项和Tn.
| Sn |
| 1 |
| 4 |
(1)求证:数列{an}是等差数列;
(2)若b1=a1,且bn=2bn-1+3(n≥2),求数列{bn}的通项公式;
(3)在(2)的条件下,若cn=
| an |
| bn+3 |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=
(an+1)2,从而得得a1=1,an-an-1=2,由此能证明数列{an}是首项为1,公差为2的等差数列.
(2)由已知条件得b1=4,bn+3=2(bn-1+3),由此求出bn=2n+1-3.
(3)cn=
=
,由此利用裂项求和法能求出数列{cn}的前n项和Tn.
| 1 |
| 4 |
(2)由已知条件得b1=4,bn+3=2(bn-1+3),由此求出bn=2n+1-3.
(3)cn=
| an |
| bn+3 |
| 2n-1 |
| 2n+1 |
解答:
(1)证明:正项数列{an}的前n项和为Sn,
是
与(an+1)2的等比中项,
∴Sn=
(an+1)2,
∴a1=S1=
(a1+1)2,
解得a1=1,
n≥2时,an=
(an+1)2-
(an-1+1)2,
整理,得(an+an+1)[
(an-an-1)-
]=0,
∵an>0,∴
(an-an-1)-
=0,
∴an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列.
(2)解:∵b1=a1,且bn=2bn-1+3(n≥2),
∴b1=1,bn+3=2(bn-1+3),
∴{bn+3}是首项为4,公比为2的等比数列,
∴bn+3=4•2n-1=2n+1,∴bn=2n+1-3.
(3)解:∵数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1,
∴cn=
=
,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,得:
Tn=
+2(
+
+…+
)-
=
+2×
-
=
+1-
-
=
-
.
∴Tn=3-
.
| Sn |
| 1 |
| 4 |
∴Sn=
| 1 |
| 4 |
∴a1=S1=
| 1 |
| 4 |
解得a1=1,
n≥2时,an=
| 1 |
| 4 |
| 1 |
| 4 |
整理,得(an+an+1)[
| 1 |
| 4 |
| 1 |
| 2 |
∵an>0,∴
| 1 |
| 4 |
| 1 |
| 2 |
∴an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列.
(2)解:∵b1=a1,且bn=2bn-1+3(n≥2),
∴b1=1,bn+3=2(bn-1+3),
∴{bn+3}是首项为4,公比为2的等比数列,
∴bn+3=4•2n-1=2n+1,∴bn=2n+1-3.
(3)解:∵数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1,
∴cn=
| an |
| bn+3 |
| 2n-1 |
| 2n+1 |
∴Tn=
| 1 |
| 21 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 3 |
| 24 |
| 2n-1 |
| 2n+1 |
①-②,得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
=
| 3 |
| 2 |
| 2n+3 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
点评:本题考查等差数列的证明,考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目