题目内容
已知数列{an}的前n项为和Sn,点(n,
)在直线y=
x+
上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b1=5,{bn}前10项和为185.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
,数列的前n和为Tn,求证:Tn≥
.
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
| 3 |
| (2an-11)(2bn-1) |
| 1 |
| 3 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
=
n+
,从而得到an=n+5,n∈N*.bn+2-bn+1=bn+1-bn,n∈N*,由此能求出bn=3n+2,n∈N*.
(Ⅱ)cn=
=
(
-
),从而Tn=
,由此能证明Tn≥
.
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
(Ⅱ)cn=
| 3 |
| (2an-11)(2bn-1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
| 1 |
| 3 |
解答:
(Ⅰ)解:∵点(n,
)在直线y=
x+
上,
∴
=
n+
,
当n≥2时,an=Sn-Sn-1=(
n2+
n)-[
(n-1)2+
(n-1)]=n+5,
当n=1时,a1=S1=6,n+5=6,
∴an=n+5,n∈N*.
又bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn,n∈N*,
∴{bn}为等差数列,
∵b1=5,∴10×5+
d=185,解得d=3,
∴bn=b1+3(n-1)=3n+2,
∴bn=3n+2,n∈N*.
(2)证明:cn=
=
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)=
,
∵Tn+1-Tn=
-
=
>0,
∴Tn单调递增,故(Tn)min=
,
∴Tn≥
.
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
∴
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
当n≥2时,an=Sn-Sn-1=(
| 1 |
| 2 |
| 11 |
| 2 |
| 1 |
| 2 |
| 11 |
| 2 |
当n=1时,a1=S1=6,n+5=6,
∴an=n+5,n∈N*.
又bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn,n∈N*,
∴{bn}为等差数列,
∵b1=5,∴10×5+
| 10×9 |
| 2 |
∴bn=b1+3(n-1)=3n+2,
∴bn=3n+2,n∈N*.
(2)证明:cn=
| 3 |
| (2an-11)(2bn-1) |
=
| 3 |
| [2(n+5)-11][2(3n+2)-1] |
=
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∵Tn+1-Tn=
| n+1 |
| 2n+3 |
| n |
| 2n+1 |
| 1 |
| (2n+3)(2n+1) |
∴Tn单调递增,故(Tn)min=
| 1 |
| 3 |
∴Tn≥
| 1 |
| 3 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目