题目内容

已知数列{an}的前n项为和Sn,点(n,
Sn
n
)在直线y=
1
2
x+
11
2
上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b1=5,{bn}前10项和为185.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
3
(2an-11)(2bn-1)
,数列的前n和为Tn,求证:Tn
1
3
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
Sn
n
=
1
2
n+
11
2
,从而得到an=n+5,n∈N*.bn+2-bn+1=bn+1-bn,n∈N*,由此能求出bn=3n+2,n∈N*
(Ⅱ)cn=
3
(2an-11)(2bn-1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,从而Tn=
n
2n+1
,由此能证明Tn
1
3
解答: (Ⅰ)解:∵点(n,
Sn
n
)在直线y=
1
2
x+
11
2
上,
Sn
n
=
1
2
n+
11
2

当n≥2时,an=Sn-Sn-1=(
1
2
n2+
11
2
n)-[
1
2
(n-1)2+
11
2
(n-1)]
=n+5,
当n=1时,a1=S1=6,n+5=6,
an=n+5,n∈N*
又bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn,n∈N*
∴{bn}为等差数列,
∵b1=5,∴10×5+
10×9
2
d=185
,解得d=3,
∴bn=b1+3(n-1)=3n+2,
bn=3n+2,n∈N*
(2)证明:cn=
3
(2an-11)(2bn-1)

=
3
[2(n+5)-11][2(3n+2)-1]

=
1
(2n-1)(2n+1)

=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)
=
n
2n+1

∵Tn+1-Tn=
n+1
2n+3
-
n
2n+1
=
1
(2n+3)(2n+1)
>0

∴Tn单调递增,故(Tnmin=
1
3

∴Tn
1
3
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网