题目内容
10.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017的值为-1.分析 在所给的等式中,令x=0,可得a0 =1,再令x=$\frac{1}{2}$,可得$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017的值.
解答 解:∵(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),令x=0,可得a0 =1;
再令x=$\frac{1}{2}$,可得a0+$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=1+$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=0,
∴$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=-1,
故答案为:-1.
点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关题目
1.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则f(-2)+f(log26)=( )
| A. | 2 | B. | 6 | C. | 8 | D. | 14 |
2.设函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_3}x,x>0}\end{array}}$,则$f({f({\frac{1}{9}})})$的值是( )
| A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{9}$log32 | D. | -4 |
19.执行如图所示的程序框图,则输出的结果为( )

| A. | 7 | B. | 9 | C. | 11 | D. | 13 |