题目内容

10.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017的值为-1.

分析 在所给的等式中,令x=0,可得a0 =1,再令x=$\frac{1}{2}$,可得$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017的值.

解答 解:∵(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),令x=0,可得a0 =1;
再令x=$\frac{1}{2}$,可得a0+$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=1+$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=0,
∴$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017=-1,
故答案为:-1.

点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网