题目内容

14.已知焦点在x轴上的双曲线渐近线方程为$y=±\frac{2}{3}x$,则此双曲线的离心率等于(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{3}$

分析 求出双曲线的渐近线方程,可得2a=3b,再由a,b,c的关系以及离心率公式计算即可得到.

解答 解:焦点在x轴上的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得,$\frac{b}{a}$=$\frac{2}{3}$,
即b=$\frac{2}{3}$a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{{a}^{2}+\frac{4}{9}{a}^{2}}$=$\frac{\sqrt{13}}{3}$a,
即有e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$.
故选:D.

点评 本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网