题目内容
13.记等差数列{an}的前n项和为Sn,若a6+a10-a12=8,a14-a8=4,则S19=( )| A. | 224 | B. | 218 | C. | 228 | D. | 258 |
分析 利用等差数列的通项公式及其求和公式即可得出.
解答 解:设等差数列{an}的公差为d,∵a6+a10-a12=8,a14-a8=4,
∴a1+3d=8,6d=4,解得d=$\frac{2}{3}$,a1=6.
则S19=19×6+$\frac{19×18}{2}$×$\frac{2}{3}$=228.
故答案为:228.
点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.在△ABC中,若A=60°,b=4,此三角形面积S=2$\sqrt{3}$,则a的值是( )
| A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 5$\sqrt{3}$ |
1.已知f(x)=sinωx-cosωx(ω>$\frac{1}{4}$,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则ω的取值范围是( )
| A. | [$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$] | B. | ($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$] | ||
| C. | [$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$] | D. | ($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$] |
8.设 f(x)是定义在[a-1,2]上偶函数,则f(x)=ax2+bx+1在[-2,0]上是( )
| A. | 增函数 | B. | 减函数 | ||
| C. | 先增后减函数 | D. | 与a,b有关,不能确定 |
18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),则实数a的取值范围是( )
| A. | $(0,\frac{4}{5})$ | B. | $(\frac{4}{5},+∞)$ | C. | $(\frac{4}{5},1)$ | D. | $(0,\frac{4}{5})∪(1,+∞)$ |
5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,四个顶点构成的四边形的面积为4,过原点的直线l(斜率不为零)与椭圆C交于A,B两点,F1,F2为椭圆的左、右焦点,则四边形AF1BF2的周长为( )
| A. | 4 | B. | $4\sqrt{3}$ | C. | 8 | D. | $8\sqrt{3}$ |
2.已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(2x-3)>0的解集为( )
| A. | (0,+∞) | B. | (1,+∞) | C. | (2,+∞) | D. | (-∞,2) |