题目内容

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的两个焦点分别为F1,F2,若椭圆上存在点P使得∠F1PF2是钝角,则椭圆离心率的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

分析 当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值,由此可得结论.

解答 解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:
∵椭圆上存在点P使得∠F1PF2是钝角,
∴△P0F1F2中,∠F1P0F2>90°,
∴Rt△P0OF2中,∠OP0F2>45°,
所以P0O<OF2,即b<c,
∴a2-c2<c2,可得a2<2c2
∴e>$\frac{\sqrt{2}}{2}$,
∵0<e<1,
∴$\frac{\sqrt{2}}{2}$<e<1.
故选:B.

点评 本题考查了椭圆的简单几何性质,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网